Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CRIIS

2018

Biological inspired approach for the inspection of structures in the splash zone

Authors
Ribeiro, M; Silva, MF;

Publication
Human-Centric Robotics- Proceedings of the 20th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, CLAWAR 2017

Abstract
There are many man-made structures near the ocean, in the so called splash zone. These structures are submitted to corrosion and need to be inspected periodically, which is difficult to be performed by humans. Therefore, automated solutions should be devised, able to withstand the conditions found there. Given that some animals live in this environment, the authors propose the development of a biological inspired robot for achieving such inspection tasks. With this purpose, a biomechanical study of the spider crab was developed, focusing on the anatomy and locomotion of this animal, using the Matlab/Simulink SimMechanics toolbox. © 2018 by World Scientific Publishing Co. Pte. Ltd.

2018

Modelling, Trajectory Planning and Control of a Quadruped Robot Using Matla® /Simulink™

Authors
Oliveira, I; Barbosa, R; Silva, M;

Publication
ROBOT 2017: THIRD IBERIAN ROBOTICS CONFERENCE, VOL 2

Abstract
Due to the difficulty of building and making control tests in real robots, it is usual to first have a simulated model that provides a good approach of a real robot's behaviour. The importance of a good control system in execution of a planned trajectory inspired this work, whose purpose is to design a control system for a quadruped robot and test its performance.

2018

Collaborative Learning with Sustainability-driven Projects: A Summary of the EPS@ISEP Programme

Authors
Silva, MF; Malheiro, B; Guedes, P; Duarte, A; Ferreira, P;

Publication
INTERNATIONAL JOURNAL OF ENGINEERING PEDAGOGY

Abstract
This paper describes the collaborative learning environment, aligned with the United Nations Millennium Development Goals, provided by the European Project Semester (EPS). EPS is a one semester capstone project programme offered by eighteen European engineering schools as part of their student exchange programme portfolio. In this international programme, students are organized in teams, grouping individuals from diverse academic backgrounds and nationalities. The teams, after choosing a project proposal, become fully responsible for the conduction of their projects. By default, project proposals refer to open multidisciplinary real problems. The purpose of the project is to expose students to problems of a greater dimension and complexity than those faced throughout the degree programme as well as to put them in contact with the so-called real world, in opposition to the academic world. EPS provides an integrated framework for undertaking capstone projects, which is focused on multicultural and multidisciplinary teamwork, communication, problem-solving, creativity, leadership, entrepreneurship, ethical reasoning and global contextual analysis. Specifically, the design and development of sustainable systems for growing food allow students not only to reach the described objectives, but to foster sustainable development practices. As a result, we recommend the adoption of this category of projects within EPS for the benefit of engineering students and of the society as a whole.

2018

Outdoor Intelligent Shader. An EPS@ISEP 2018 Project

Authors
Mahon, C; Baptista, M; Majewska, M; Tscholl, M; Bergervoet, S; Malheiro, B; Silva, MF; Ribeiro, C; Justo, J; Ferreira, P; Guedes, P;

Publication
SIXTH INTERNATIONAL CONFERENCE ON TECHNOLOGICAL ECOSYSTEMS FOR ENHANCING MULTICULTURALITY (TEEM'18)

Abstract
This paper presents an overview of the development of SetSun, an outdoor intelligent shader, by a team of five Erasmus students within the framework of the European Project Semester at Instituto Superior de Engenharia do Porto, in the spring of 2018. The major goal of this project-based learning experience was to design a new type of parasol, granting a novel wellness and luxury experience, by combining the functionalities of smart electronics with that of a traditional parasol, while providing the participants with a meaningful learning experience for their future professional life. The Team conducted multiple studies, including scientific, technical, sustainability, marketing, ethics and deontological analyses, and discussions to derive the requirements, design the structure, specify the list of materials and components and develop a functional system. Following these studies, the Team assembled, debugged and tested the SetSun prototype successfully.

2018

Application for automatic programming of palletizing robots

Authors
Moura, FM; Silva, MF;

Publication
2018 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC)

Abstract
Current market demands require several degrees of flexibility, speed, and repetitiveness of manufacture and logistic processes. Considering that a fourth industrial revolution is to be expected in a near future - which is highly based on smart machines, storage systems, and production facilities that cooperate to allow dynamic businesses and engineering processes - robotics presents itself as an increasingly sought-after solution, since it is often associated with such concepts. Hence, it is of no wonder that the worldwide operational stock of industrial robots has been increasing in a steady pace for the past decades and is expected to progress in such a trend. Within the several activities for robots on industrial applications, handling operations are regarded as predominant on the European market. Subsequently, palletizing applications are amongst the handling operations that have played an important role in the end stages of modern supply chains. In this context, this work aims to contextualise and develop an application for palletizing robots. This application, together with an off-line programming software (RobotStudio), allows for automatic programming of a robot's palletizing functions. Developed in the robot's native language (RAPID), the application has a basic user interface written in XML and can provide different pallet patterns. © 2018 IEEE.

2018

Preface

Authors
Silva, MF; Virk, GS; Tokhi, MO; Malheiro, B; Ferreira, P; Guedes, P;

Publication
Human-Centric Robotics- Proceedings of the 20th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, CLAWAR 2017

Abstract

  • 148
  • 330