2024
Authors
Ribeiro J.; Pinheiro R.; Soares S.; Valente A.; Amorim V.; Filipe V.;
Publication
Lecture Notes in Mechanical Engineering
Abstract
The manual monitoring of refilling stations in industrial environments can lead to inefficiencies and errors, which can impact the overall performance of the production line. In this paper, we present an unsupervised detection pipeline for identifying refilling stations in industrial environments. The proposed pipeline uses a combination of image processing, pattern recognition, and deep learning techniques to detect refilling stations in visual data. We evaluate our method on a set of industrial images, and the findings demonstrate that the pipeline is reliable at detecting refilling stations. Furthermore, the proposed pipeline can automate the monitoring of refilling stations, eliminating the need for manual monitoring and thus improving industrial operations’ efficiency and responsiveness. This method is a versatile solution that can be applied to different industrial contexts without the need for labeled data or prior knowledge about the location of refilling stations.
2024
Authors
Berger, GS; Mendes, J; Chellal, AA; Bonzatto, L; da Silva, YMR; Zorawski, M; Pereira, AI; Pinto, MF; Castro, J; Valente, A; Lima, J;
Publication
OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, PT I, OL2A 2023
Abstract
This paper presents an approach to address the challenges of manual inspection using multirotor Unmanned Aerial Vehicles (UAV) to detect olive tree flies (Bactrocera oleae). The study employs computer vision techniques based on the You Only Look Once (YOLO) algorithm to detect insects trapped in yellow chromotropic traps. Therefore, this research evaluates the performance of the YOLOv7 algorithm in detecting and quantify olive tree flies using images obtained from two different digital cameras in a controlled environment at different distances and angles. The findings could potentially contribute to the automation of insect pest inspection by UAV-based robotic systems and highlight potential avenues for future advances in this field. In view of the experiments conducted indoors, it was found that the Arducam IMX477 camera acquires images with greater clarity compared to the TelloCam, making it possible to correctly highlight the set of Bactrocera oleae in different prediction models. The presented results in this research demonstrate that with the introduction of data augmentation and auto label techniques on the set of images of Bactrocera oleae, it was possible to arrive at a prediction model whose average detection was 256 Bactrocera oleae in relation to the corresponding ground truth value to 270 Bactrocera oleae.
2024
Authors
Kalbermatter, RB; Franco, T; Pereira, AI; Valente, A; Soares, SP; Lima, J;
Publication
OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, PT I, OL2A 2023
Abstract
People are living longer, promoting new challenges in healthcare. Many older adults prefer to age in their own homes rather than in healthcare institutions. Portugal has seen a similar trend, and public and private home care solutions have been developed. However, age-related pathologies can affect an elderly person's ability to perform daily tasks independently. Ambient Assisted Living (AAL) is a domain that uses information and communication technologies to improve the quality of life of older adults. AI-based fall detection systems have been integrated into AAL studies, and posture estimation tools are important for monitoring patients. In this study, the OpenCV and the YOLOv7 machine learning framework are used to develop a fall detection system based on posture analysis. To protect patient privacy, the use of a thermal camera is proposed to prevent facial recognition. The developed system was applied and validated in the real scenario.
2024
Authors
Saraiva, AA; da Silva, JPO; Moura Sousa, JV; Fonseca Ferreira, NM; Soares, SP; Valente, A;
Publication
Proceedings of the 17th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2024, Volume 1, Rome, Italy, February 21-23, 2024.
Abstract
2024
Authors
Neves, BP; Santos, VDN; Valente, A;
Publication
ELECTRONICS
Abstract
This article presents a new firmware update paradigm for optimising the procedure in microcontrollers. The aim is to allow updating during program execution, without interruptions or restarts, replacing only specific code segments. The proposed method uses static and absolute addresses to locate and isolate the code segment to be updated. The work focuses on Microchip's PIC18F27K42 microcontroller and includes an example of updating functionality without affecting ongoing applications. This approach is ideal for band limited channels, reducing the amount of data transmitted during the update process. It also allows incremental changes to the program code, preserving network capacity, and reduces the costs associated with data transfer, especially in firmware update scenarios using cellular networks. This ability to update the normal operation of the device, avoiding service interruption and minimising downtime, is of remarkable value.
2024
Authors
Barradas, R; Lencastre, JA; Soares, S; Valente, A;
Publication
Proceedings of the 16th International Conference on Computer Supported Education, CSEDU 2024, Angers, France, May 2-4, 2024, Volume 1.
Abstract
STEM education advances at the same rate as the need for new and more evolved tools. This article introduces the latest version of the Kid Grígora educational robot, based on the work of Barradas et al. (2019). Targeted for students aged 8 to 18, the robot serves as an interdisciplinary teaching tool, integrated into STEM curricula. The upgraded version corrects what we’ve learned from a real test with 177 students from a Portuguese school and adds other features that allow this new robot to be used in even more educational STEM and problem-solving scenarios. We focused on the creation of a second beta version of the prototype, named Stemie, and its heuristic evaluation by three experts. After all the issues and suggestions from the experts have been resolved and implemented, the new version is ready for usability evaluation. Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.