Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by PHT

2021

Acoustic Optical Fiber Sensor Based on Graphene Oxide Membrane

Authors
Monteiro, CS; Raposo, M; Ribeiro, PA; Silva, SO; Frazao, O;

Publication
SENSORS

Abstract
A Fabry-Perot acoustic sensor based on a graphene oxide membrane was developed with the aim to achieve a faster and simpler fabrication procedure when compared to similar graphene-based acoustic sensors. In addition, the proposed sensor was fabricated using methods that reduce chemical hazards and environmental impacts. The developed sensor, with an optical cavity of around 246 mu m, showed a constant reflected signal amplitude of 6.8 +/- 0.1 dB for 100 nm wavelength range. The sensor attained a wideband operation range between 20 and 100 kHz, with a maximum signal-to-noise ratio (SNR) of 32.7 dB at 25 kHz. The stability and sensitivity to temperatures up to 90 degrees C was also studied. Moreover, the proposed sensor offers the possibility to be applied as a wideband microphone or to be applied in more complex systems for structural analysis or imaging.

2021

Effect of Low-Doses of Gamma Radiation on Electric Arc-Induced Long Period Fiber Gratings

Authors
Mesonero Santos, P; Fernandez Medina, A; Coelho, LCC; Viveiros, D; Jorge, PA; Belenguer, T; Heredero, RL;

Publication
SENSORS

Abstract
This work presents an experimental study on the effects of gamma radiation on Long Period Fiber Gratings (LPFGs) in a low-dose test campaign to evaluate their eventual degradation. The study was carried out with standard single-mode fibers where the grating was inscribed using the Electric-Arc Discharge (EAD) technique. Before the gamma campaign, a detailed optical characterization was performed with repeatability tests to verify the accuracy of the setup and the associated error sources. The gamma-induced changes up to a dose of 200 krad and the recovery after radiation were monitored with the Dip Wavelength Shift (DWS). The results show that the gamma sensitivity for a total dose of 200 krad is 11 pm/krad and a total DWS of 2.3 nm has been observed with no linear dependence. Post-radiation study shows that recovery from radiation-induced wavelength shift is nearly complete in about 4000 h. Experimental results show that the changes suffered under gamma irradiation of these LPFGs are temporary making them a good choice as sensors in space applications.

2021

Environmental Sensitivity of Fabry-Perot Microcavities Induced by Layered Graphene-Dielectric Hybrid Coatings

Authors
Peixoto, R; Pires, JPS; Monteiro, CS; Raposo, M; Ribeiro, PA; Silva, SO; Frazao, O; Lopes, JMVP;

Publication
PHYSICAL REVIEW APPLIED

Abstract
We propose a fiber-based environmental sensor that exploits the reflection-phase-shift tunability provided by the use of layered coatings composed of dielectric slabs spaced by conducting membranes. A transfer-matrix study is done in a simplified theoretical model, for which an enhanced sensitivity of the reflection interference pattern to the output medium is demonstrated, in the typical refractive index range of liquid media. An experimental configuration using a cascaded Fabry-Perot microcavity coated by a graphene oxide/polyethylenimine (GO/PEI) multilayered structure is demonstrated. Its cost-effective chemical production method makes graphene oxide-based hybrid coatings excellent candidates for future real-life sensing devices.

2021

Biosensors for Biogenic Amines: A Review

Authors
Vasconcelos, H; Coelho, LCC; Matias, A; Saraiva, C; Jorge, PAS; de Almeida, JMMM;

Publication
BIOSENSORS-BASEL

Abstract
Biogenic amines (BAs) are well-known biomolecules, mostly for their toxic and carcinogenic effects. Commonly, they are used as an indicator of quality preservation in food and beverages since their presence in higher concentrations is associated with poor quality. With respect to BA's metabolic pathways, time plays a crucial factor in their formation. They are mainly formed by microbial decarboxylation of amino acids, which is closely related to food deterioration, therefore, making them unfit for human consumption. Pathogenic microorganisms grow in food without any noticeable change in odor, appearance, or taste, thus, they can reach toxic concentrations. The present review provides an overview of the most recent literature on BAs with special emphasis on food matrixes, including a description of the typical BA assay formats, along with its general structure, according to the biorecognition elements used (enzymes, nucleic acids, whole cells, and antibodies). The extensive and significant amount of research that has been done to the investigation of biorecognition elements, transducers, and their integration in biosensors, over the years has been reviewed.

2021

Colossal Enhancement of Strain Sensitivity Using the Push-Pull Deformation Method

Authors
Robalinho, P; Gomes, A; Frazao, O;

Publication
IEEE SENSORS JOURNAL

Abstract
In this work, a colossal enhancement of strain sensitivities through the push-pull deformation method in interferometry is reported for the first time. For the demonstration of the new method, two cascaded interferometers in a fiber loop mirror are used. Usually, strain is applied at the fiber end of the interferometers. In this work, we propose applying strain at the middle of the two cascaded interferometers whereas the fiber ends of the sensor are fixed. Strain is then applied in the fusion region between the two-cascaded interferometers in a push-pull configuration, thus ensuring simultaneously the extension of one interferometer and the compression of the other. Although the carrier signal is maintained constant, the proposed technique induces a colossal enhancement of sensitivity in the envelope signal. Strain sensitivities up to 10000 pm/ $\mu \varepsilon $ are achieved.

2021

Feasibility of Total White Blood Cells Counts by Visible-Near Infrared Spectroscopy

Authors
Barroso, TG; Ribeiro, L; Gregório, H; Santos, F; Martins, RC;

Publication
Chemistry Proceedings

Abstract
Total white blood cells (WBC) count is an important indication for infection diagnosis, in both human and veterinary medicine. State-of-the-art WBC counts are performed by flow cytometry combined with light scattering or impedance measurements, in the clinical analysis laboratory. These technologies are complex and difficult to be miniaturized into a portable point-of-care (POC) system. Spectroscopy is one of the most powerful technologies for POC miniaturization due to its capacity to analyze low sample quantities, little to no sample preparation, and ‘real-time’ results. WBC is in the proportion of 1:1000 to red blood cells (RBC), and the latter dominate visible-near infrared (Vis-NIR) information due to their large quantities and hemoglobin absorbance. WBC are difficult to be detected by traditional spectral analysis because their information is contained within the interference of hemoglobin bands. Herein, we perform a feasibility study for the direct detection of WBC counts in canine blood by Vis-NIR spectroscopy for veterinary applications, benchmarking current chemometrics techniques with self-learning artificial intelligence—a new advanced method for high-accuracy quantification from spectral information. Results show that total WBC counts can be detected by Vis-NIR spectroscopy to an average detection limit of 7.8 ×109 cells/L, with an R2 of 0.9880 between impedance flow cytometry analysis and spectral quantification. This result opens new possibilities for reagent-less POC technology in infection diagnosis. As WBC counts in dogs range from 5 to 45 ×109 cells/L, the detection limit obtained in this research allows concluding that the combined use of spectroscopy with this SL-AI new algorithm is a step towards the existence of portable and miniaturized Spectral POC hemogram analysis.

  • 16
  • 75