Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CRIIS

2017

A Fast and Robust Kinematic Model for a 12 DoF Hyper-Redundant Robot Positioning: an Optimization Proposal

Authors
Lima, J; Pereira, AI; Costa, P; Pinto, A; Costa, P;

Publication
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016)

Abstract
This paper describes an optimization procedure for a robot with 12 degrees of freedom avoiding the inverse kinematics problem, which is a hard task for this type of robot manipulator. This robot can be used to pick and place tasks in complex designs. Combining an accurate and fast direct kinematics model with optimization strategies, it is possible to achieve the joints angles for a desired end-effector position and orientation. The optimization methods stretched simulated annealing algorithm and genetic algorithm were used. The solutions found were validated using data originated by a real and by a simulated robot formed by 12 servomotors with a gripper.

2017

Visual motion perception for mobile robots through dense optical flow fields

Authors
Pinto, AM; Costa, PG; Correia, MV; Matos, AC; Moreira, AP;

Publication
ROBOTICS AND AUTONOMOUS SYSTEMS

Abstract
Recent advances in visual motion detection and interpretation have made possible the rising of new robotic systems for autonomous and active surveillance. In this line of research, the current work discusses motion perception by proposing a novel technique that analyzes dense flow fields and distinguishes several regions with distinct motion models. The method is called Wise Optical Flow Clustering (WOFC) and extracts the moving objects by performing two consecutive operations: evaluating and resetting. Motion properties of the flow field are retrieved and described in the evaluation phase, which provides high level information about the spatial segmentation of the flow field. During the resetting operation, these properties are combined and used to feed a guided segmentation approach. The WOFC requires information about the number of motion models and, therefore, this paper introduces a model selection method based on a Bayesian approach that balances the model's fitness and complexity. It combines the correlation of a histogram-based analysis with the decay ratio of the normalized entropy criterion. This approach interprets the flow field and gives an estimative about the number of moving objects. The experiments conducted in a realistic environment have proved that the WOFC presents several advantages that meet the requirements of common robotic and surveillance applications: is computationally efficient and provides a pixel-wise segmentation, comparatively to other state-of-the-art methods.

2017

Robot Localization System in a Hard Outdoor Environment

Authors
Conceição, T; dos Santos, FN; Costa, PG; Moreira, AP;

Publication
ROBOT 2017: Third Iberian Robotics Conference - Volume 1, Seville, Spain, November 22-24, 2017

Abstract
Localization and mapping of autonomous robots in a hard and unstable environment (Steep Slope Vineyards) is a challenging research topic. Typically, the commonly used dead reckoning systems can fail due to the harsh conditions of the terrain and the Global Position System (GPS) accuracy can be considerably noisy or not always available. One solution is to use wireless sensors in a network as landmarks. This paper evaluates a ultra-wideband time-of-flight based technology (Pozyx), which can be used as cost-effective solution for application in agricultural robots that works in harsh environment. Moreover, this paper implements a Localization Extended Kalman Filter (EKF) that fuses odometry with the Pozyx Range measurements to increase the default Pozyx Algorithm accuracy. © Springer International Publishing AG 2018.

2017

Differential Mobile Robot Controller Study: A Low Cost Experiment Based on a Small Arduino Based Prototype

Authors
Goncalves, J; Costa, P;

Publication
2017 25TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED)

Abstract
In this paper it is presented a low cost experiment based on a small Arduino based prototype. The chosen educational challenge is a classical introductory experiment, that consists in following a line with a mobile robot. The presented experiment has as goal to introduce students to mobile robotics, having as base a challenge and a kinematics that are commonly applied in Junior competitions. A group of students participated in a workshop that consisted, initially, in a lecture where tutors explained the differential robot kinematics and how to develop a controller for the proposed challenge. Then the students, after the theoretical introduction, implemented the proposed robot controller.

2017

Object Tracking in a Moving Reference Frame

Authors
Relvas, P; Costa, PJ; Moreira, AP;

Publication
ROBOT 2017: Third Iberian Robotics Conference - Volume 1, Seville, Spain, November 22-24, 2017

Abstract
Object tracking in a moving frame is becoming a common requirement in a lot of mobile robotic applications, such as search and rescue, monitoring and surveillance, and even in some scientific applications, such as robotic soccer. In all these applications, the robots must be capable of estimating the target position and, sometimes, velocity on their own. Depending on the application and on the current scene situation, the estimates must be more or less accurate, depending on the robot intention to interact with the target, whether to catch it, follow it, etc. The problem is that a robot moves along the working area, having some uncertainty in its pose estimation. This paper proposes an approach based on a Kalman Filter to estimate the object position and velocity, regardless the robot pose. As a testbed, a Middle-Size League soccer robot tracking a moving ball example will be used. This approach allows the agent to follow and interact with a moving object, even if its localization is not available. © Springer International Publishing AG 2018.

2017

A cable-driven robot for architectural constructions: a visual-guided approach for motion control and path-planning

Authors
Pinto, AM; Moreira, E; Lima, J; Sousa, JP; Costa, P;

Publication
AUTONOMOUS ROBOTS

Abstract
Cable-driven robots have received some attention by the scientific community and, recently, by the industry because they can transport hazardous materials with a high level of safeness which is often required by construction sites. In this context, this research presents an extension of a cable-driven robot called SPIDERobot, that was developed for automated construction of architectural projects. The proposed robot is formed by a rotating claw and a set of four cables, enabling four degrees of freedom. In addition, this paper proposes a new Vision-Guided Path-Planning System (V-GPP) that provides a visual interpretation of the scene: the position of the robot, the target and obstacles location; and optimizes the trajectory of the robot. Moreover, it determines a collision-free trajectory in 3D that takes into account the obstacles and the interaction of the cables with the scene. A set of experiments make possible to validate the contribution of V-GPP to the SPIDERobot while operating in realistic working conditions, as well as, to evaluate the interaction between the V-GPP and the motion controlling system. The results demonstrated that the proposed robot is able to construct architectural structures and to avoid collisions with obstacles in their working environment. The V-GPP system localizes the robot with a precision of 0.006 m, detects the targets and successfully generates a path that takes into account the displacement of cables. Therefore, the results demonstrate that the SPIDERobot can be scaled up to real working conditions.

  • 165
  • 330