Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by PHT

2021

Spectral Reconstruction and Bayesian Model Framework for Characterization of Long Period Fiber Gratings

Authors
Dias, B; Santos, P; Jorge, PAS; de Almeida, JMMM; Coelho, LCC;

Publication
IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE

Abstract
The use of Long-Period Fiber Gratings (LPFGs) as sensors has been thoroughly researched, given the multitude of parameters these structures can monitor by themselves (such as temperature, strain, curvature) and the potential for combination with other materials that allow for monitoring of parameters such as humidity, pH and chemical concentration, at a low price and with easy fabrication processes available. This interest has increased the need for the development of interrogation systems for these sensors, particularly in the C-band spectral region. Given the cost and physical limitations (such as size and weight) of traditional solutions like Optical Spectrum Analyzers (OSA), the development of low-cost approaches for LPFG spectral analysis became an important topic that needed further development. The development of a simple curve fitting routine for LPFG spectra is reported in this article, along with a framework for automatic detection of certain physical phenomena such as corrosion and the presence of chemical species, among others.

2021

Development of a Long Period Fiber Grating Interrogation System Using A Multimode Laser Diode

Authors
Silva, LH; Santos, P; Coelho, LCC; Jorge, P; Baptista, JM;

Publication
SENSORS

Abstract
Optical fiber gratings have long shown their sensing capabilities. One of the main challenges, however, is the interrogation method applied, since typical systems tend to use broadband light sources with optical spectrum analyzers, laser scanning units or CCD (Charged Coupled Device) spectrometers. The following paper presents the development of an interrogation system, which explores the temperature response of a multimode laser diode, in order to interrogate long period fiber gratings. By performing a spectral sweep along one of its rejection bands, a discrete attenuation spectrum is created. Through a curve fitting technique, the original spectrum is restored. The built unit, while presenting a substantially reduced cost compared with typical interrogation systems, is capable of interrogating along a 10 nm window with measurement errors reaching minimum values as low as 0.4 nm, regarding the grating central wavelength, and 0.4 dB for its attenuation. Given its low cost and reduced dimensions, the developed system shows potential for slow-changing field applications.

2021

MMI Sensor for Diameter Measurement †

Authors
Cardoso, V; Caldas, P; Giraldi, MT; Fernandes, C; Frazão, O; Costa, J; Santos, JL;

Publication
Engineering Proceedings

Abstract
Cylindrical structure analysis is important in several areas and can be performed through the evaluation of the diameter changes of these structures. Two important areas can be mentioned: pipelines for oil or gas distribution and the condition and growth of trees. In the tree diameter changes, monitoring is directly related to irrigation, since it depends on the water soil deficit and trees are important in the global circulation of heat and water. This diameter can change in the order of 5 mm for some species. In this paper, a strain gauge sensor based on a core diameter mismatch technique for diameter measurement is proposed and investigated. The sensor structure is formed by splicing an uncoated short section of MMF (Multimode Fiber) between two standard SMFs (Singlemode Fiber) called SMF–MMF–SMF (SMS); the MMF length is 15 mm. Two cylindrical structures were placed on a 3D printer, with different diameter sizes ((Formula presented.) : 80 mm and 110 mm), to assist in monitoring the diameter changes. The SMS sensor was placed on the printed structure and fixed at two points, such that, by reducing the diameter of the structure, the sensor presents dips or peaks shift of the transmittance spectrum due to the induced curvature and strain. Three values were used for the spacing between the fixation points ((Formula presented.)): (a) 5 mm, (b) 10 mm, and (c) 15 mm. For each choice of fixation points, (Formula presented.) = 80 mm: (a) a sensitivity of -0.876 nm/mm, (Formula presented.) of 0.9909 and a dynamic range of 5 mm; (b) a sensitivity of -0.3892 nm/mm, (Formula presented.) of 0.9954 and a dynamic range of 4 mm; and (c) a sensitivity of -0.768 nm/mm, (Formula presented.) of 0.9811 and a dynamic range of 2 mm. For (Formula presented.) = 110 mm, the sensor presents for each choice of fixation points: (a) a sensitivity of -0.22 nm/mm, (Formula presented.) of 0.9979 and a dynamic range of 8 mm; (b) a sensitivity of -0.2284 nm/mm, (Formula presented.) of 0.9888 and a dynamic range of 6 mm; and (c) a sensitivity of -0.691 nm/mm, (Formula presented.) of 0.9892 and a dynamic range of 3.5 mm. © 2021 by the authors.

2020

Femtosecond laser direct written off-axis fiber Bragg gratings for sensing applications

Authors
Viveiros, D; Amorim, VA; Maia, JM; Silva, S; Frazao, O; Jorge, PAS; Fernandes, LA; Marques, PVS;

Publication
OPTICS AND LASER TECHNOLOGY

Abstract
First order off-axis fiber Bragg gratings (FBGs) were fabricated in a standard single mode fiber (SMF-28e) through femtosecond laser direct writing. A minimum offset distance between the grating and core center of 2.5 mu m was found to create a multimode section, which supports two separate fiber modes (LP0,1 and LP1,1), each split into two degenerate polarization modes. The resulting structure breaks the cylindrical symmetry of the fiber, introducing birefringence (approximate to 10(-4)) resulting in a polarization dependent Bragg wavelength for each mode. Based on the modal and birefringence behavior, three off-axis FBGs were fabricated with 3.0, 4.5 and 6.0 mu m offsets from the core center, and then characterized in strain, temperature, and curvature. The tested off-axis FBGs exhibited a similar strain sensitivity of similar to 1.14 pm/mu epsilon and a temperature sensitivity of similar to 12 pm/C. The curvature and orientation angle were simultaneously monitored by analyzing the intensity fluctuation and the wavelength shift of the LP1,1 Bragg resonance. A maximum curvature sensitivity of 0.53 dB/m(-1) was obtained for the off-axis FBG with a 3.0 mu m offset.

2020

New Material Concepts

Authors
Nunes, JP; Costa, AJ; Rodrigues, DSS; Covas, JA; Viana, JC; Pontes, AJ; Duarte, FM; Fernandes, FMB; Camacho, E; Santos, TG; Inácio, PL; Nascimento, M; Paixão, T; Novais, S; Pinto, JL;

Publication
Advanced Structured Materials

Abstract
This chapter focuses on new compositions of thermoplastic matrices and reinforcements to process by fused deposition modelling (FDM). The available materials for this additive manufacturing (AM) technique are generally limited to PLA—polylactic acid, ABS—acrylonitrile butadiene styrene and PA—polyamide (NYLON®) with temperature gradients and mechanical behaviours that are not suited for high-performance applications, such as aeronautics and automotive sector. In this work, an intensive research was made in order to evaluate mechanical, thermal and rheological properties considered important for 3D printing of commercial filaments. Results aided in the selection of high-performance reinforced materials for AM. Advanced polymers, such as PEEK—polyether ether ketone and PA66—polyamide 66, were the matrices chosen to produce high service nanocomposite formulations, each with varying amounts of multi-wall carbon nanotubes (MWCNTs). The resulting feedstock materials were characterized using the same techniques as the commercial filaments. Preliminary tests with printed parts of these composites were made in pursuance of their optimal printing parameters to undergo an experimental hybrid system (EHS). © 2020, The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG.

2020

Reliability and NDT Methods

Authors
Santos, TG; Oliveira, JP; Machado, MA; Inácio, PL; Duarte, VR; Rodrigues, TA; Santos, RA; Simão, C; Carvalho, M; Martins, A; Nascimento, M; Novais, S; Ferreira, MS; Pinto, JL; Fernandes, FB; Camacho, E; Viana, J; Miranda, RM;

Publication
Advanced Structured Materials

Abstract
Composites are finding increased use in structural high demanding and high added value applications in advanced industries. A wide diversity exists in terms of matrix type, which can be either polymeric or metallic and type of reinforcements (ceramic, polymeric or metallic). Several technologies have been used to produce these composites; among them, additive manufacturing (AM) is currently being applied. In structural applications, the presence of defects due to fabrication is of major concern, since it affects the performance of a component with negative impact, which can affect, ultimately, human lives. Thus, the detection of defects is highly important, not only surface defects but also barely visible defects. This chapter describes the main types of defects expected in composites produced by AM. The fundamentals of different non-destructive testing (NDT) techniques are briefly discussed, as well as the state of the art of numerical simulation for several NDT techniques. A multiparametric and customized inspection system was developed based on the combination of innovative techniques in modelling and testing. Experimental validation with eddy currents, ultrasounds, X-ray and thermography is presented and analysed, as well as integration of distinctive techniques and 3D scanning characterization. © 2020, The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG.

  • 17
  • 75