Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CRIIS

2016

Coordination of Marine Robots Under Tracking Errors and Communication Constraints

Authors
Ferreira, BM; Matos, AC; Cruz, NA; Moreira, AP;

Publication
IEEE JOURNAL OF OCEANIC ENGINEERING

Abstract
This paper presents the development and the experimental validation of a centralized coordination control scheme that is robust to communication constraints and individual tracking errors for a team of possibly heterogeneous marine vehicles. By assuming the existence of a lower level target tracking control layer, a centralized potential-field-based coordination scheme is proposed to drive a team of robots along a path that does not necessarily need to be defined a priori. Furthermore, the formation is allowed to hold its position (the vehicles hold their positions with regard to a static virtual leader), which is particularly appreciated in several marine applications. As it is important to guarantee stability and mission completion in adverse environments with limited communications, the centralized control scheme for coordination is constructed in a way that makes it robust to tracking errors and intermittent communication links. The study and developments presented in this paper are complemented with field experiments in which vehicles have coordinated their operation to keep in formation over a dynamic path and static points. This work considers two types of communication technologies. Firstly, standard high rate radio communications are used to drive the formation and, secondly, acoustic communications are employed to assess the performance and the robustness of the proposed approach to degraded and highly variable conditions. Index Terms-Communication

2016

Integrated tasks assignment and routing for the estimation of the optimal number of AGVS

Authors
Vivaldini, K; Rocha, LF; Martarelli, NJ; Becker, M; Paulo Moreira, AP;

Publication
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY

Abstract
A fundamental problem in the management of an automated guided vehicle system (AGVS) is the determination of the load to be transported and the vehicle to transport it. The time for the loading and unloading of pallets must be specified as soon as possible. Typical objectives are minimization of travel times and costs by the reduction of the number of vehicles required to fulfill a given transportation order. This article presents a methodology for the estimation the minimum number of AGVs (considering all the available ones at the shop floor level) required to execute a given transportation order within a specific time-window. A comparison is made between the algorithms Shortest Job First and meta-heuristic Tabu Search (applied to an initial solution) for a task assignment. An enhanced Dijkstra algorithm is used for the conflict-free routing task. The number of vehicles is estimated so as to provide an efficient distribution of tasks and reduce the operational costs of the materials handling system. Simulation results of two typical industrial warehouse shop floor scenarios are provided. Although the study focuses on pre-planning of order fulfillment of materials handling, the proposed methodology can also be utilized as an important tool for investment analysis of the warehouse layout design and for estimating the ideal number of AGVs.

2016

Modelling a biomass supply chain through discrete-event simulation

Authors
Pinho, TM; Coelho, JP; Moreira, AP; Boaventura Cunha, J;

Publication
IFAC PAPERSONLINE

Abstract
The organizational struck of the companies in the biomass energy sector, regarding the supply chain management, services, can be greatly improved through the use of software decision support. tools. These tools should be able to provide real-time alternative scenarios when deviations from the initial production plans are observed. To make this possible it is necessary to have representative production chain process models where several scenarios and solutions can be evaluated accurately. Due to its nature, this type of process is more adequately represented by means of event-based models. to particular, this work presents the modelling a typical biomass production chain using the computing platform SIMEVENTS. Throughout the article details about the conceptual model, as well as simulation results, are provided.

2016

Multi-robot Planning Using Robot-Dependent Reachability Maps

Authors
Pereira, T; Veloso, M; Moreira, A;

Publication
ROBOT 2015: SECOND IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, VOL 1

Abstract
In this paper we present a new concept of robot-dependent reachability map (RDReachMap) for mobile platforms. In heterogeneous multi-robot systems, the reachability limit of robots motion and actuation must be considered when assigning tasks to them. We created an algorithm that generates those reachability maps, separating regions that can be covered by a robot from the unreachable ones, using morphological operations. Our method is dependent on the robot position, and is parameterized with the robot's size and actuation radius. For this purpose we introduce a new technique, the partial morphological closing operation. The algorithm was tested both in simulated and real environment maps. We also present a common problem of multi robot routing, which we solve with a planner that uses our reachability maps in order to generate valid plans. We contribute a heuristic that generates paths for two robots using the reachability concept.

2016

Validation of a Time Based Routing Algorithm Using a Realistic Automatic Warehouse Scenario

Authors
Santos, J; Costa, P; Rocha, L; Vivaldini, K; Paulo Moreira, AP; Veiga, G;

Publication
ROBOT 2015: SECOND IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, VOL 2

Abstract
Traffic Control is one of the fundamental problems in the management of an Automated Guided Vehicle (AGV) system. Its main objectives are to assure efficient conflict free routes and to avoid/solve system deadlocks. In this sense, and as an extension of our previouswork, this paper focus on exploring the capabilities of the Time Enhanced A* (TEA*) to dynamically control a fleet of AGVs, responsible for the execution of a predetermined set of tasks, considering an automatic warehouse case scenario. During the trial execution the proposed algorithm, besides having shown high capability on preventing/dealing with the occurrence of deadlocks, it also has exhibited high efficiency in the generation of free collision trajectories. Moreover, it was also selected an alternative from the state-of-art, in order to validate the TEA* results and compare it.

2016

Incremental texture mapping for autonomous driving

Authors
Oliveira, M; Santos, V; Sappa, AD; Dias, P; Moreira, AP;

Publication
ROBOTICS AND AUTONOMOUS SYSTEMS

Abstract
Autonomous vehicles have a large number of on-board sensors, not only for providing coverage all around the vehicle, but also to ensure multi-modality in the observation of the scene. Because of this, it is not trivial to come up with a single, unique representation that feeds from the data given by all these sensors. We propose an algorithm which is capable of mapping texture collected from vision based sensors onto a geometric description of the scenario constructed from data provided by 3D sensors. The algorithm uses a constrained Delaunay triangulation to produce a mesh which is updated using a specially devised sequence of operations. These enforce a partial configuration of the mesh that avoids bad quality textures and ensures that there are no gaps in the texture. Results show that this algorithm is capable of producing fine quality textures.

  • 187
  • 331