Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CRIIS

2016

Design of sustainable domes in the context of EPS@ISEP

Authors
Balbaert, J; Park, J; Marimon, R; Serfozo, A; Cazelles, M; Domenic, SC; Speckstadt, A; Skonieczna, K; Rajnai, G; Daza, JP; Barb, BM; Duarte, AJ; Malheiro, B; Ribeiro, C; Ferreira, F; Silva, MF; Ferreira, P; Guedes, P;

Publication
Proceedings of the Fourth International Conference on Technological Ecosystems for Enhancing Multiculturality, Salamanca, Spain, November 02 - 04, 2016

Abstract
The European Project Semester (EPS) is a one-semester capstone project/internship program offered to engineering, product design and business undergraduates by 18 European engineering schools. EPS aims to prepare future engineers to think and act globally, by adopting project-based learning and teamwork methodologies, fostering the development of complementary skills and addressing sustainability and multiculturalism. In 2016, two EPS@ISEP teams embraced the challenge of building a robust, inexpensive, modular, comfortable and safe wooden / metallic dome using simple techniques and sustainable materials. This challenge is demanding -requires a multidisciplinary and user-centred design -As well as rewarding -contributes to satisfy the right to adequate, safe and affordable housing as stated in the United Nations Sustainable Development Goals. The goal is to solve the problem in a modular and sustainable way, i.e., by using repetitive linear elements made of locally available materials. This approach aims to dramatically decrease the cost of production and shipping, simplify the construction process and address the needs of the dome users. Although geodesic cross-linked structures have been studied for some time, their design requires the involvement of all stakeholders as well as a team which understands and integrates the contributions from areas such as electronics, mechanics, civil, environmental or materials engineering. The project-based learning approach fosters, on the one hand, autonomy, responsibility and the ability to make sound technical-scientific choices and, on the other hand, develops teamwork, sustainable development and personal and cross-cultural communication skills, while promoting the emergence of innovative, creative and sometimes audacious solutions, typical of the youth. ©2016 ACM. © 2016 ACM.

2016

Educating Global Engineers with EPS@ISEP The "Pet Tracker" Project Experience

Authors
Borzecka, A; Fagerstroem, A; Costa, A; Gasull, MD; Malheiro, B; Ribeiro, C; Silva, MF; Caetano, N; Ferreira, P; Guedes, P;

Publication
2016 2ND INTERNATIONAL CONFERENCE OF THE PORTUGUESE SOCIETY FOR ENGINEERING EDUCATION (CISPEE)

Abstract
The European Project Semester (EPS) is a one-semester capstone project/internship programme offered to engineering, product design and business undergraduates by 18 European engineering schools. EPS aims to prepare future engineers to think and act globally, by adopting project-based learning and teamwork methodologies, fostering the development of complementary skills and addressing sustainability and multiculturalism. Since 2011, the EPS@ISEP programme offers a set of multidisciplinary projects to multicultural teams of students, so that each team element can bring to the project its previous knowledge and background experience. In the spring of 2013, a team choose to develop a pet tracker to provide pet owners with information regarding the whereabouts of their pets and, above all, to reduce the number of pets lost. After analysing related products, the team decided to add extra features for product differentiation. Combining a triple-axis accelerometer, a low cost GPS receiver and the GSM/GPRS communication technology, the team designed a system providing pet location, tracking, map display and activity monitoring services. This paper describes the development process of the Pet Tracker system, comprising a wearable device for pets and a website for pet owners.

2016

Didactic Robotic Fish - An EPS@ISEP 2016 Project

Authors
Reinhardt, A; Esteban, AC; Urbanska, J; McPhee, M; Greene, T; Duarte, AJ; Malheiro, B; Ribeiro, C; Ferreira, F; Silva, MF; Ferreira, P; Guedes, P;

Publication
Interactive Collaborative Learning - Proceedings of the 19th ICL Conference - Volume 1, Belfast, UK, 21-23 September 2016.

Abstract
This paper presents the development of Bubbles, a didactic robotic fish created within the scope of the European Project Semester offered by the School of Engineering of the Polytechnic of Porto. The robotic toy is intended to provide children with an appropriate set up to learn programming and become acquainted with technology. Consequently, Bubbles needs to appeal to young children and successfully blend fun with learning. The developer team, composed of five engineering students from different fields and nationalities, conducted multiple research and discussions to design Bubbles, while keeping the fish movements and programming simple. The fish body was created with a colourful appearance, ensuring floatability, waterproofness and including a tail, inspired on real life fish, for locomotion and to retain a fish-like appearance. Finally, the team designed a website where they share, in different languages, the blue-prints of the structure, the schematics of the control system, the list of material, including electronic components, the user assembly and operation manual as well as propose exploring activities. © Springer International Publishing AG 2017.

2016

LSA Portraiture Robot

Authors
Rodrigues, B; Cruz, E; Dias, A; Silva, MF;

Publication
ROBOT 2015: SECOND IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, VOL 2

Abstract
This paper describes the development of an application that allows an ABB robot arm to automatically perform the portrait of people. The Portraiture Robot performs the picture of a human face on paper. The developed system consists of 4 steps: (i) image acquisition through a webcam, (ii) image processing to retrieve the contours and features of the person's face, (iii) vectorization of the coordinates in the image plane, and (iv) conversion of the coordinates to the RAPID programming language. To get only the person's face, is performed a background subtraction and to obtain only the necessary information from the image are used filtering techniques to remove the features and contours of the person's face. To convert these points into x, y coordinates, the contours are vectorised and sent to a file, saved according to a defined protocol, and allowing to create a program for the robot. The developed application allows processing of all blocks listed above in real-time and in a robust manner, having the ability to adapt to any environment and allowing continued use. The work was validated through the participation in the 2014 Portuguese Robotics Open, and in an ISEP exhibition that occurred in Maia, always with good results.

2016

Artistic Robot - An EPS@ISEP 2016 Project

Authors
Dziomdziora, A; Sin, DN; Robertson, F; Mänysalo, M; Pattiselano, N; Duarte, AJ; Malheiro, B; Ribeiro, C; Ferreira, F; Silva, MF; Ferreira, P; Guedes, P;

Publication
Interactive Collaborative Learning - Proceedings of the 19th ICL Conference - Volume 1, Belfast, UK, 21-23 September 2016.

Abstract
This paper reports the design and development process of an artistic robot by a team of five engineering and design students from Belgian, Finland, Poland, Romania and Scotland. To contribute to this goal, the team designed and assembled GraphBot, a voice commanded drawing robot prototype, following the EPS@ISEP process. In addition, the team specified their target as young children and, in particular girls, and stated that their motivation was to introduce young generations to the world of science, technology, engineering and mathematics (STEM). In terms of outcomes, this project is expected to go beyond the boundaries of the traditional development of scientific and technical competences, by providing the students with a holistic learning experience, fostering also the development of personal and inter-personal skills within a multidisciplinary and multicultural teamwork set-up. © Springer International Publishing AG 2017.

2016

Development of an application for balancing product flow lines through genetic algorithms

Authors
Silva, MF; Reis, C; Pimenta, R;

Publication
International Journal of Business Excellence

Abstract
When defining the layout for a production line, it is necessary to assign tasks to workstations, so that the work is performed in a feasible sequence and approximately equal amounts of time are needed at each workstation, a process called line balancing. Therefore, the need for balancing production lines involves the distribution of sequential activities for jobs in order to allow high labour and equipment utilisation and minimise the idle time. Line balancing problems are complex to treat, being used distinct methodologies to perform it. This paper describes an application for line balancing using two genetic algorithms (the first obtains solutions to the problem and the second optimises those solutions), associated with a graphical interface for the problem data input and visualisation of results. Results demonstrate advantages over heuristic methods as it is possible to obtain more than one solution and it is more practical to use the developed application. Copyright © 2016 Inderscience Enterprises Ltd.

  • 191
  • 331