Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CRIIS

2024

Assessing the Impact of Clearing and Grazing on Fuel Management in a Mediterranean Oak Forest through Unmanned Aerial Vehicle Multispectral Data

Authors
Padua, L; Castro, JP; Castro, J; Sousa, JJ; Castro, M;

Publication
DRONES

Abstract
Climate change has intensified the need for robust fire prevention strategies. Sustainable forest fuel management is crucial in mitigating the occurrence and rapid spread of forest fires. This study assessed the impact of vegetation clearing and/or grazing over a three-year period in the herbaceous and shrub parts of a Mediterranean oak forest. Using high-resolution multispectral data from an unmanned aerial vehicle (UAV), four flight surveys were conducted from 2019 (pre- and post-clearing) to 2021. These data were used to evaluate different scenarios: combined vegetation clearing and grazing, the individual application of each method, and a control scenario that was neither cleared nor purposely grazed. The UAV data allowed for the detailed monitoring of vegetation dynamics, enabling the classification into arboreal, shrubs, herbaceous, and soil categories. Grazing pressure was estimated through GPS collars on the sheep flock. Additionally, a good correlation (r = 0.91) was observed between UAV-derived vegetation volume estimates and field measurements. These practices proved to be efficient in fuel management, with cleared and grazed areas showing a lower vegetation regrowth, followed by areas only subjected to vegetation clearing. On the other hand, areas not subjected to any of these treatments presented rapid vegetation growth.

2024

Combining UAV-Based Multispectral and Thermal Infrared Data with Regression Modeling and SHAP Analysis for Predicting Stomatal Conductance in Almond Orchards

Authors
Guimaraes, N; Sousa, JJ; Couto, P; Bento, A; Padua, L;

Publication
REMOTE SENSING

Abstract
Understanding and accurately predicting stomatal conductance in almond orchards is critical for effective water-management strategies, especially under challenging climatic conditions. In this study, machine-learning (ML) regression models trained on multispectral (MSP) and thermal infrared (TIR) data acquired from unmanned aerial vehicles (UAVs) are used to address this challenge. Through an analysis of spectral indices calculated from UAV-based data and feature-selection methods, this study investigates the predictive performance of three ML models (extra trees, ET; stochastic gradient descent, SGD; and extreme gradient boosting, XGBoost) in predicting stomatal conductance. The results show that the XGBoost model trained with both MSP and TIR data had the best performance (R2 = 0.87) and highlight the importance of integrating surface-temperature information in addition to other spectral indices to improve prediction accuracy, up to 11% more when compared to the use of only MSP data. Key features, such as the green-red vegetation index, chlorophyll red-edge index, and the ratio between canopy temperature and air temperature (Tc-Ta), prove to be relevant features for model performance and highlight their importance for the assessment of water stress dynamics. Furthermore, the implementation of Shapley additive explanations (SHAP) values facilitates the interpretation of model decisions and provides valuable insights into the contributions of the features. This study contributes to the advancement of precision agriculture by providing a novel approach for stomatal conductance prediction in almond orchards, supporting efforts towards sustainable water management in changing environmental conditions.

2024

Advancements in Remote Sensing Imagery Applications for Precision Management in Olive Growing: A Systematic Review

Authors
Marques, P; Padua, L; Sousa, JJ; Fernandes Silva, A;

Publication
REMOTE SENSING

Abstract
This systematic review explores the role of remote sensing technology in addressing the requirements of sustainable olive growing, set against the backdrop of growing global food demands and contemporary environmental constraints in agriculture. The critical analysis presented in this document assesses different remote sensing platforms (satellites, manned aircraft vehicles, unmanned aerial vehicles and terrestrial equipment) and sensors (RGB, multispectral, thermal, hyperspectral and LiDAR), emphasizing their strategic selection based on specific study aims and geographical scales. Focusing on olive growing, particularly prominent in the Mediterranean region, this article analyzes the diverse applications of remote sensing, including the management of inventory and irrigation; detection/monitoring of diseases and phenology; and estimation of crucial parameters regarding biophysical parameters, water stress indicators, crop evapotranspiration and yield. Through a global perspective and insights from studies conducted in diverse olive-growing regions, this review underscores the potential benefits of remote sensing in shaping and improving sustainable agricultural practices, mitigating environmental impacts and ensuring the economic viability of olive trees.

2024

Versatile method for grapevine row detection in challenging vineyard terrains using aerial imagery

Authors
Padua, L; Chojka, A; Morais, R; Peres, E; Sousa, JJ;

Publication
COMPUTERS AND ELECTRONICS IN AGRICULTURE

Abstract
Accurate detection and differentiation of grapevine canopies from other vegetation, along with individual grapevine row identification, pose significant challenges in precision viticulture (PV), especially within irregularly structured vineyards shaped by natural terrain slopes. This study employs aerial imagery captured by unmanned aerial vehicles (UAVs) and introduces an image processing methodology that relies on the orthorectified raster data obtained through UAVs. The proposed method adopts a data-driven approach that combines visible indices and elevation data to achieve precise grapevine row detection. Thoroughly tested across various vineyard configurations, including irregular and terraced landscapes, the findings underscore the method's effectiveness in identifying grapevine rows of diverse shapes and configurations. This capability is crucial for accurate vineyard monitoring and management. Furthermore, the method enables clear differentiation between inter-row spaces and grapevine vegetation, representing a fundamental advancement for comprehensive vineyard analysis and PV planning. This study contributes to the field of PV by providing a reliable tool for grapevine row detection and vineyard feature classification. The proposed methodology is applicable to vineyards with varying layouts, offering a versatile solution for enhancing precision viticulture practices.

2024

Comparative Analysis of TLS and UAV Sensors for Estimation of Grapevine Geometric Parameters

Authors
Ferreira, L; Sousa, JJ; Lourenço, JM; Peres, E; Morais, R; Pádua, L;

Publication
SENSORS

Abstract
Understanding geometric and biophysical characteristics is essential for determining grapevine vigor and improving input management and automation in viticulture. This study compares point cloud data obtained from a Terrestrial Laser Scanner (TLS) and various UAV sensors including multispectral, panchromatic, Thermal Infrared (TIR), RGB, and LiDAR data, to estimate geometric parameters of grapevines. Descriptive statistics, linear correlations, significance using the F-test of overall significance, and box plots were used for analysis. The results indicate that 3D point clouds from these sensors can accurately estimate maximum grapevine height, projected area, and volume, though with varying degrees of accuracy. The TLS data showed the highest correlation with grapevine height (r = 0.95, p < 0.001; R2 = 0.90; RMSE = 0.027 m), while point cloud data from panchromatic, RGB, and multispectral sensors also performed well, closely matching TLS and measured values (r > 0.83, p < 0.001; R2 > 0.70; RMSE < 0.084 m). In contrast, TIR point cloud data performed poorly in estimating grapevine height (r = 0.76, p < 0.001; R2 = 0.58; RMSE = 0.147 m) and projected area (r = 0.82, p < 0.001; R2 = 0.66; RMSE = 0.165 m). The greater variability observed in projected area and volume from UAV sensors is related to the low point density associated with spatial resolution. These findings are valuable for both researchers and winegrowers, as they support the optimization of TLS and UAV sensors for precision viticulture, providing a basis for further research and helping farmers select appropriate technologies for crop monitoring.

2024

Remote Sensing Applications in Almond Orchards: A Comprehensive Systematic Review of Current Insights, Research Gaps, and Future Prospects

Authors
Guimaraes, N; Sousa, JJ; Pádua, L; Bento, A; Couto, P;

Publication
APPLIED SCIENCES-BASEL

Abstract
Almond cultivation is of great socio-economic importance worldwide. With the demand for almonds steadily increasing due to their nutritional value and versatility, optimizing the management of almond orchards becomes crucial to promote sustainable agriculture and ensure food security. The present systematic literature review, conducted according to the PRISMA protocol, is devoted to the applications of remote sensing technologies in almond orchards, a relatively new field of research. The study includes 82 articles published between 2010 and 2023 and provides insights into the predominant remote sensing applications, geographical distribution, and platforms and sensors used. The analysis shows that water management has a pivotal focus regarding the remote sensing application of almond crops, with 34 studies dedicated to this subject. This is followed by image classification, which was covered in 14 studies. Other applications studied include tree segmentation and parameter extraction, health monitoring and disease detection, and other types of applications. Geographically, the United States of America (USA), Australia and Spain, the top 3 world almond producers, are also the countries with the most contributions, spanning all the applications covered in the review. Other studies come from Portugal, Iran, Ecuador, Israel, Turkey, Romania, Greece, and Egypt. The USA and Spain lead water management studies, accounting for 23% and 13% of the total, respectively. As far as remote sensing platforms are concerned, satellites are the most widespread, accounting for 46% of the studies analyzed. Unmanned aerial vehicles follow as the second most used platform with 32% of studies, while manned aerial vehicle platforms are the least common with 22%. This up-to-date snapshot of remote sensing applications in almond orchards provides valuable insights for researchers and practitioners, identifying knowledge gaps that may guide future studies and contribute to the sustainability and optimization of almond crop management.

  • 20
  • 346