Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by PHT

2019

Addressing the Fabrication Difficulties of Femtosecond Laser Written Surface Waveguides for Enhanced Evanescent Coupling

Authors
Amorim, VA; Maia, JM; Viveiros, D; Marques, PVS;

Publication
EPJ Web of Conferences

Abstract
In this work, the fabrication of optical waveguides embedded in fused silica (Suprasil1) and boro-aluminosilicate glass (Eagle2000) is demonstrated with femtosecond laser direct writing, as well as their suitability to be brought to the surface, through wet etching, for enhanced evanescent coupling with the external dielectric medium. Fused silica demonstrated to be inappropriate in this particular application, as the guiding region is at the bottom of the induced modification, creating a barrier between the guided mode and the substrate’s boundary. Furthermore, the existence of nanogratings meant that, upon contact of the top of the induced modification with the substrate’s boundary, the waveguide is quickly etched. Eagle2000 demonstrated to be superior to fused silica due to its characteristic modification cross-section and absence of nanogratings, which allowed the placement of the guiding region as close to the substrate’s surface as required. However, surface roughness arising from the creation of insoluble products in the HF solution was found. The addition of HCl to dissolve these products was implemented.

2019

Measuring optical properties of human liver between 400 and 1000 nm

Authors
Carneiro, I; Carvalho, S; Henrique, R; Oliveira, L; Tuchin, VV;

Publication
QUANTUM ELECTRONICS

Abstract
Laser diagnostics and treatment procedures are commonly performed for visible and near-IR wavelengths. The knowledge of the wavelength dependences for the optical properties of various biological tissues in this spectral range is useful for clinical applications. Since the optical properties of human liver have been previously known only for near-IR wavelengths, the aim is to estimate their wavelength dependences between 400 and 1000 nm. Using spectral measurements from liver samples in this range, we determine their optical properties with the inverse adding-doubling method. The obtained results indicate the presence of bile, oxyhaemoglobin and deoxyhaemoglobin in human liver. The combination of these biological components results in strong absorption for wavelengths between 400 and 600 nm, with peaks at unusual wavelengths. For wavelengths above 600 nm, the wavelength dependences for all optical properties present the typical behavior, but strong and shifted absorption observed for wavelengths below 600 nm has been previously unknown and can be useful for clinical procedures with lasers working in this range.

2019

Application of a novel LIBS prototype as an analytical grade tool for Li quantification in pegmatite samples

Authors
Guimaraes, D; Ferreira, MFS; Ribeiro, R; Dias, C; Lima, A; Martins, RC; Jorge, PAS;

Publication
FOURTH INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS

Abstract
A high-resolution advanced laser induced breakdown spectroscopy prototype was used to quantify lithium (Li) in lithiniferous rocks. Samples were collected from Barroso's mine (Portugal), claimed as Western Europe's largest spodumene Li discovery. 51 samples from a reverse circulation drill were collected, one for each meter interval, dried, milled, pressed into pellets and further analyzed by laser induced breakdown spectroscopy. Quantification was attempted using either linear models based on the intensity of selected Li spectral lines or advanced chemometrics methods. The latter was very successful, with correlation coefficients of 0.97 against certified laboratory results.

2019

The Optical Clearing Method

Authors
Oliveira, LMC; Tuchin, VV;

Publication
SpringerBriefs in Physics

Abstract

2019

Moving tissue spectral window to the deep-ultraviolet via optical clearing

Authors
Carneiro, I; Carvalho, S; Henrique, R; Oliveira, L; Tuchin, V;

Publication
JOURNAL OF BIOPHOTONICS

Abstract
The optical immersion clearing technique has been successfully applied through the last 30 years in the visible to near infrared spectral range, and has proven to be a promising method to promote the application of optical technologies in clinical practice. To investigate its potential in the ultraviolet range, collimated transmittance spectra from 200 to 1000 nm were measured from colorectal muscle samples under treatment with glycerol-water solutions. The treatments created two new optical windows with transmittance efficiency peaks at 230 and 300 nm, with magnitude increasing with glycerol concentration in the treating solution. Such discovery opens the opportunity to develop clinical procedures to perform diagnosis or treatments in the ultraviolet.

2019

A robust ex vivo method to evaluate the diffusion properties of agents in biological tissues

Authors
Carneiro, I; Carvalho, S; Henrique, R; Oliveira, LM; Tuchin, VV;

Publication
JOURNAL OF BIOPHOTONICS

Abstract
A robust method is presented for evaluating the diffusion properties of chemicals in ex vivo biological tissues. Using this method that relies only on thickness and collimated transmittance measurements, the diffusion properties of glycerol, fructose, polypropylene glycol and water in muscle tissues were evaluated. Amongst other results, the diffusion coefficient of glycerol in colorectal muscle was estimated with a value of 3.3 x 10(-7) cm(2)/s. Due to the robustness and simplicity of the method, it can be used in other fields of biomedical engineering, namely in organ cryoprotection and food industry.

  • 25
  • 75