Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CRIIS

2022

Contactless Soil Moisture Mapping Using Inexpensive Frequency-Modulated Continuous Wave RADAR for Agricultural Purposes

Authors
Coutinho, RM; Sousa, A; Santos, F; Cunha, M;

Publication
APPLIED SCIENCES-BASEL

Abstract
Soil Moisture (SM) is one of the most critical factors for a crop's growth, yield, and quality. Although Ground-Penetrating RADAR (GPR) is commonly used in satelite observation to analyze soil moisture, it is not cost-effective for agricultural applications. Automotive RADAR uses the concept of Frequency-Modulated Continuous Wave (FMCW) and is more competitive in terms of price. This paper evaluates the viability of using a cost-effective RADAR as a substitute for GPR for soil moisture content estimation. The research consisted of four experiments, and the results show that the RADAR's output signal and the soil moisture sensor SEN0193 have a high correlation with values as high as 0.93 when the SM is below 15%. Such results show that the tested sensor (and its cost-effective working principle) are able to determine soil water content (with certain limitations) in a non-intrusive, proximal sensing manner.

2022

Edge AI-Based Tree Trunk Detection for Forestry Monitoring Robotics

Authors
da Silva, DQ; dos Santos, FN; Filipe, V; Sousa, AJ; Oliveira, PM;

Publication
ROBOTICS

Abstract
Object identification, such as tree trunk detection, is fundamental for forest robotics. Intelligent vision systems are of paramount importance in order to improve robotic perception, thus enhancing the autonomy of forest robots. To that purpose, this paper presents three contributions: an open dataset of 5325 annotated forest images; a tree trunk detection Edge AI benchmark between 13 deep learning models evaluated on four edge-devices (CPU, TPU, GPU and VPU); and a tree trunk mapping experiment using an OAK-D as a sensing device. The results showed that YOLOR was the most reliable trunk detector, achieving a maximum F1 score around 90% while maintaining high scores for different confidence levels; in terms of inference time, YOLOv4 Tiny was the fastest model, attaining 1.93 ms on the GPU. YOLOv7 Tiny presented the best trade-off between detection accuracy and speed, with average inference times under 4 ms on the GPU considering different input resolutions and at the same time achieving an F1 score similar to YOLOR. This work will enable the development of advanced artificial vision systems for robotics in forestry monitoring operations.

2022

Simulated Mounting of a Flexible Wire for Automated Assembly of Vehicle Cabling Systems

Authors
Leão, G; Sousa, A; Dinis, D; Veiga, G;

Publication
ROBOT 2022: Fifth Iberian Robotics Conference - Advances in Robotics, Volume 1, Zaragoza, Spain, 23-25 November 2022

Abstract
The manipulation of deformable objects poses a significant challenge for the automotive industry. In particular, the assembly of flexible cables and wire-harnesses in vehicles is still performed manually as there is yet to be a reliable and general solution for this problem. This paper presents a simple yet efficient motion planning algorithm to mount a flexible wire in an assembly jig, where the wire must traverse a set of forks in order. The algorithm uses a heuristic based on a set of control points to guide the wire’s movement. Various controlled assembly scenarios are built in simulation using MuJoCo, a physics engine that can emulate the dynamics of Deformable Linear Objects (DLO). Experimental results in simulation demonstrated that the amount and orientation of the forks has a large impact in the solution’s performance and highlighted several key ideas and challenges moving forward. Thus, this work serves as a stepping stone towards the development of more complete solutions, capable of assembling flexible items in vehicles. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

2022

Stereo Based 3D Perception for Obstacle Avoidance in Autonomous Wheelchair Navigation

Authors
Gomes, B; Torres, J; Sobral, P; Sousa, A; Reis, LP;

Publication
ROBOT 2022: Fifth Iberian Robotics Conference - Advances in Robotics, Volume 1, Zaragoza, Spain, 23-25 November 2022

Abstract

2022

Topological map-based approach for localization and mapping memory optimization

Authors
Aguiar, AS; dos Santos, FN; Santos, LC; Sousa, AJ; Boaventura Cunha, J;

Publication
JOURNAL OF FIELD ROBOTICS

Abstract
Robotics in agriculture faces several challenges, such as the unstructured characteristics of the environments, variability of luminosity conditions for perception systems, and vast field extensions. To implement autonomous navigation systems in these conditions, robots should be able to operate during large periods and travel long trajectories. For this reason, it is essential that simultaneous localization and mapping algorithms can perform in large-scale and long-term operating conditions. One of the main challenges for these methods is maintaining low memory resources while mapping extensive environments. This work tackles this issue, proposing a localization and mapping approach called VineSLAM that uses a topological mapping architecture to manage the memory resources required by the algorithm. This topological map is a graph-based structure where each node is agnostic to the type of data stored, enabling the creation of a multilayer mapping procedure. Also, a localization algorithm is implemented, which interacts with the topological map to perform access and search operations. Results show that our approach is aligned with the state-of-the-art regarding localization precision, being able to compute the robot pose in long and challenging trajectories in agriculture. In addition, we prove that the topological approach innovates the state-of-the-art memory management. The proposed algorithm requires less memory than the other benchmarked algorithms, and can maintain a constant memory allocation during the entire operation. This consists of a significant innovation, since our approach opens the possibility for the deployment of complex 3D SLAM algorithms in real-world applications without scale restrictions.

2022

Realistic 3D Simulation of a Hybrid Legged-Wheeled Robot

Authors
Soares, IN; Pinto, VH; Lima, J; Costa, P;

Publication
ROBOTICS FOR SUSTAINABLE FUTURE, CLAWAR 2021

Abstract
In order to study the behavior and performance of a robot, building its simulation model is crucial. Realistic simulation tools using physics engines enable faster, more accurate and realistic testing conditions, without depending on the real vehicle. By combining legged and wheeled locomotion, hybrid vehicles are specially useful for operating in different types of terrains, both indoors and outdoors. They present increased mobility, versatility and adaptability, as well as easier maneuverability, when compared to vehicles using only one of the mechanisms. This paper presents the realistic simulation through the SimTwo simulator software of a hybrid legged-wheeled robot. It has four 3-DOF (degrees of freedom) legs combining rigid and non-rigid joints and has been fully designed, tested and validated in the simulated environment with incorporated dynamics.

  • 33
  • 329