Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by PHT

2014

Refractive index measurement of liquids based on microstructured optical fibers

Authors
Silva, S; Roriz, P; Frazão, O;

Publication
Photonics

Abstract
This review is focused on microstructured optical fiber sensors developed in recent years for liquid RI sensing. The review is divided into three parts: the first section introduces a general view of the most relevant refractometric sensors that have been reported over the last thirty years. Section 2 discusses several microstructured optical fiber designs, namely, suspended-core fiber, photonic crystal fiber, large-core air-clad photonic crystal fiber, and others. This part is also divided into two main groups: the interferometric-based and resonance-based configurations. The sensing methods rely either on full/selective filling of the microstructured fiber air holes with a liquid analyte or by simply immersing the sensing fiber into the liquid analyte. The sensitivities and resolutions are tabled at the end of this section followed by a brief discussion of the obtained results. The last section concludes with some remarks about the microstructured fiber-based configurations developed for RI sensing and their potential for future applications. © 2014 by the authors.

2014

Intradiscal pressure variation under spontaneous ventilation

Authors
Roriz, P; Ferreira, J; Potes, JC; Oliveira, MT; Santos, JL; Simoes, JA; Frazao, O;

Publication
23RD INTERNATIONAL CONFERENCE ON OPTICAL FIBRE SENSORS

Abstract
The pressure measured in the intervertebral discs is a response to the loads acting on the spine. External loads, such as the reaction forces resulting from locomotion, manual handling and collisions are probably the most relevant in studying spine trauma. However, the physiological functions such as breathing and hearth rate also participate in subtle variations of intradiscal pressure that can be observed only in vivo at resting. Present work is an effort to measure the effect of breathing on intradiscal pressure of an anesthetized sheep.

2014

Cavity Ring-Down with OTDR for remote sensing

Authors
Passos, DJ; Silva, SO; Marques, MB; Frazao, O;

Publication
23RD INTERNATIONAL CONFERENCE ON OPTICAL FIBRE SENSORS

Abstract
This work presents a demonstration of the potential of fiber cavity ring-down for remote sensing, by using an OTDR to send impulses down similar to 20 km of optical fiber at the end of which the fiber ring cavity was placed. The OTDR showed almost no losses in the fiber, so other ring-down cavities could be spliced along the same fiber. To study the sensitivity of the cavity ring an intensity sensor based on a taper was placed in the ring and glued to a translation stage. A displacement of the stage imposes a curvature on the taper and an associated loss. The configuration had a sensitivity of (11.8 +/- 0.5) mu s/mm.

2014

New Silica Microspheres Array Sensor

Authors
Ferreira, MS; Santos, JL; Frazao, O;

Publication
23RD INTERNATIONAL CONFERENCE ON OPTICAL FIBRE SENSORS

Abstract
In this work a novel optical fiber sensor based on silica microspheres array is proposed. Different sensing heads are presented and compared, differing on the number of microspheres. These structures, ranging from arrays of one to five, are spliced in series. The sensor is subjected to different physical parameters, such as strain, temperature, refractive index and bending. Depending on the number of microspheres the sensitivities to strain and bending are different. The sensor also presents a high sensitivity to temperature of 20.3 pm/degrees C.

2014

Fluid evaporation monitoring with suspended-core fibers

Authors
Mouraa, JP; Baierl, H; Auguste, JL; Jamier, R; Roy, P; Santos, JL; Frazao, O;

Publication
SECOND INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS

Abstract
A new configuration for volatile organic compound sensing is proposed. A sub-milimiter four-hole suspended core optical fiber tip, spliced to a standard single mode fiber, is dipped in a liquid volatile compound and the reflected signal is continuously interrogated. When the fiber is immersed in acetone it suffers a 1 4 dB signal drop. Different menisci form in each cladding cavity, with different evaporation times and rates. The signal restores its initial state not when the evaporation process is complete but after the collapse of a dominant meniscus.

2014

Characterization of a hybrid Fabry-Perot Cavity based on a four-bridge double-Y-shape-core microstructured fiber

Authors
Pinto, AMR; Lopez Aldaba, A; Lopez Amo, M; Frazao, O; Santos, JL; Baptista, JM; Baierl, H; Auguste, JL; Jamier, R; Roy, P;

Publication
Proceedings of SPIE - The International Society for Optical Engineering

Abstract
In this work, a hybrid Fabry-Perot interferometer based on a novel four-bridge microstructured fiber is presented and characterized. The characterization of this cavity is performed in the L-band using two different instruments: an optical spectrum analyzer and an optical backscatter reflectometer. The Fabry-Perot output signal presents linear variation with temperature changes (sensitivity 9.8-11.9 pm/°C), variation with the polarization states of light and high stability. © 2014 SPIE.

  • 59
  • 75