Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CRIIS

2021

Overview of Robotic Based System for Rehabilitation and Healthcare

Authors
Chellal A.A.; Lima J.; Fernandes F.P.; Gonçalves J.; Pacheco M.F.; Monteiro F.C.;

Publication
Communications in Computer and Information Science

Abstract
As in many other fields, robots are increasingly being used in the healthcare sector, particularly for hospital logistics support, surgery and rehabilitation. Rehabilitation is a concern for millions of people around the world, and because of this, there has been a constant progress over the last decade in the rehabilitation robotics field, with the use of new technologies aimed at overcoming the different challenges faced in this field. In this sense, this paper reviews the main applications developed in the last ten years of rehabilitation robotics, as well as the different challenges that still need to be addressed in order to achieve the design of a prototype that is easy to use, small, safe, less costly and brings real added value to this field. Much of the efforts of the researchers in this topics is focused on providing as many DOF and ROM as possible, and also on the designing of new robots control algorithms.

2021

Current trends in robotics in education and computational thinking

Authors
Garcia Penalvo, FJ; Conde, MA; Goncalves, J; Lima, J;

Publication
TEEM'21: NINTH INTERNATIONAL CONFERENCE ON TECHNOLOGICAL ECOSYSTEMS FOR ENHANCING MULTICULTURALITY

Abstract
Computational thinking-related issues have had a specific track on TEEM Conference since 2016. This is the sixth edition of this track within the 2021 TEEM Conference edition. This year the papers are centered on programming and robotics, but the artificial intelligence topics increase their presence in the track.

2021

Design of an Embedded Energy Management System for Li-Po Batteries Based on a DCC-EKF Approach for Use in Mobile Robots

Authors
Chellal, AA; Goncalves, J; Lima, J; Pinto, V; Megnafi, H;

Publication
MACHINES

Abstract
In mobile robotics, since no requirements have been defined regarding accuracy for Battery Management Systems (BMS), standard approaches such as Open Circuit Voltage (OCV) and Coulomb Counting (CC) are usually applied, mostly due to the fact that employing more complicated estimation algorithms requires higher computing power; thus, the most advanced BMS algorithms reported in the literature are developed and verified by laboratory experiments using PC-based software. The objective of this paper is to describe the design of an autonomous and versatile embedded system based on an 8-bit microcontroller, where a Dual Coulomb Counting Extended Kalman Filter (DCC-EKF) algorithm for State of Charge (SOC) estimation is implemented; the developed prototype meets most of the constraints for BMSs reported in the literature, with an energy efficiency of 94% and an error of SOC accuracy that varies between 2% and 8% based on low-cost components.

2021

Dual Coulomb Counting Extended Kalman Filter for Battery SOC Determination

Authors
Chellal A.A.; Lima J.; Gonçalves J.; Megnafi H.;

Publication
Communications in Computer and Information Science

Abstract
The importance of energy storage continues to grow, whether in power generation, consumer electronics, aviation, or other systems. Therefore, energy management in batteries is becoming an increasingly crucial aspect of optimizing the overall system and must be done properly. Very few works have been found in the literature proposing the implementation of algorithms such as Extended Kalman Filter (EKF) to predict the State of Charge (SOC) in small systems such as mobile robots, where in some applications the computational power is severely lacking. To this end, this work proposes an implementation of the two algorithms mainly reported in the literature for SOC estimation, in an ATMEGA328P microcontroller-based BMS. This embedded system is designed taking into consideration the criteria already defined for such a system and adding the aspect of flexibility and ease of implementation with an average error of 5% and an energy efficiency of 94%. One of the implemented algorithms performs the prediction while the other will be responsible for the monitoring.

2021

Low-cost SARS-CoV-2 vaccine homogenization system for Pfizer-BioNTech covid-19 vials

Authors
Lima, J; Rocha, L; Rocha, C; Costa, P;

Publication
IAES International Journal of Robotics and Automation (IJRA)

Abstract
<p>The current SARS-CoV-2 pandemic has been affecting all sectors worldwide, and efforts have been targeting the enhancement of people’s health and labour conditions of collaborators belonging to healthcare institutions. The recent vaccines emerging against covid-19 are seen as a solution to address the problem that has already killed up to two million people. The preparation of the Pfizer-BioNTech covid-19 vaccine requires a specific manipulation before its administration. A correct homogenization with saline solution is needed and, therefore, a manual process with a predefined protocol should be accomplished. This action can endanger the operators’ ergonomics due to the repetitive movement of the process. This paper proposes a low-cost prototype incorporating an arduino based embedded system actuating a servomotor to perform an autonomous vials’ homogenization allowing to redirect these healthcare workers to other tasks. Moreover, a contactless start order process was implemented to avoid contact with the operator and, consequently, the contamination. The prototype was successfully tested and recognised, and is being applied during the preparation of the covid-19 vaccines at the hospital pharmacy of <em>Centro Hospitalar de Vila Nova de Gaia/Espinho</em>, <em>E.P.E.</em>, Portugal. It can be easily replicated since the source files to assemble it are provided by the authors.</p>

2021

Optimal Sizing of a Hybrid Energy System Based on Renewable Energy Using Evolutionary Optimization Algorithms

Authors
Amoura Y.; Ferreira Â.P.; Lima J.; Pereira A.I.;

Publication
Communications in Computer and Information Science

Abstract
The current trend in energy sustainability and the energy growing demand have given emergence to distributed hybrid energy systems based on renewable energy sources. This study proposes a strategy for the optimal sizing of an autonomous hybrid energy system integrating a photovoltaic park, a wind energy conversion, a diesel group, and a storage system. The problem is formulated as a uni-objective function subjected to economical and technical constraints, combined with evolutionary approaches mainly particle swarm optimization algorithm and genetic algorithm to determine the number of installation elements for a reduced system cost. The computational results have revealed an optimal configuration for the hybrid energy system.

  • 63
  • 330