Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CRIIS

2020

Localization and Mapping for Robots in Agriculture and Forestry: A Survey

Authors
Aguiar, AS; dos Santos, FN; Cunha, JB; Sobreira, H; Sousa, AJ;

Publication
ROBOTICS

Abstract
Research and development of autonomous mobile robotic solutions that can perform several active agricultural tasks (pruning, harvesting, mowing) have been growing. Robots are now used for a variety of tasks such as planting, harvesting, environmental monitoring, supply of water and nutrients, and others. To do so, robots need to be able to perform online localization and, if desired, mapping. The most used approach for localization in agricultural applications is based in standalone Global Navigation Satellite System-based systems. However, in many agricultural and forest environments, satellite signals are unavailable or inaccurate, which leads to the need of advanced solutions independent from these signals. Approaches like simultaneous localization and mapping and visual odometry are the most promising solutions to increase localization reliability and availability. This work leads to the main conclusion that, few methods can achieve simultaneously the desired goals of scalability, availability, and accuracy, due to the challenges imposed by these harsh environments. In the near future, novel contributions to this field are expected that will help one to achieve the desired goals, with the development of more advanced techniques, based on 3D localization, and semantic and topological mapping. In this context, this work proposes an analysis of the current state-of-the-art of localization and mapping approaches in agriculture and forest environments. Additionally, an overview about the available datasets to develop and test these approaches is performed. Finally, a critical analysis of this research field is done, with the characterization of the literature using a variety of metrics.

2020

Navigation Stack for Robots Working in Steep Slope Vineyard

Authors
Santos, LC; de Aguiar, ASP; Santos, FN; Valente, A; Ventura, JB; Sousa, AJ;

Publication
Intelligent Systems and Applications - Proceedings of the 2020 Intelligent Systems Conference, IntelliSys 2020, London, UK, September 3-4, 2020, Volume 1

Abstract
Agricultural robotics is nowadays a complex, challenging, and relevant research topic for the sustainability of our society. Some agricultural environments present harsh conditions to robotics operability. In the case of steep-slope vineyards, there are several robotic challenges: terrain irregularities, characteristics of illumination, and inaccuracy/unavailability of the Global Navigation Satellite System. Under these conditions, robotics navigation, mapping, and localization become a challenging task. Performing these tasks with safety and accuracy, a reliable and advanced Navigation stack for robots working in a steep slope vineyard is required. This paper presents the integration of several robotic components, path planning aware of robot centre of gravity and terrain slope, occupation grid map extraction from satellite images, a localization and mapping procedure based on high-level visual features reliable under GNSS signals blockage/missing, for steep-slope robots. © 2021, Springer Nature Switzerland AG.

2020

Learning to Play Precision Ball Sports from scratch: a Deep Reinforcement Learning Approach

Authors
Antao, L; Sousa, A; Reis, LP; Goncalves, G;

Publication
2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN)

Abstract
Over the last years, robotics has increased its interest in learning human-like behaviors and activities. One of the most common actions searched, as well as one of the most fun to replicate, is the ability to play sports. This has been made possible with the steady increase of automated learning, encouraged by the tremendous developments in computational power and improved reinforcement learning (RL) algorithms. This paper implements a beginner Robot player for precision ball sports like boccia and bocce. A new simulated environment (PrecisionBall) is created, and a seven degree-of-freedom (DoF) robotic arm, is able to learn from scratch how to win the game and throw different types of balls towards the goal (the jack), using deep reinforcement learning. The environment is compliant with OpenAI Gym, using the MuJoCo realistic physics engine for a realistic simulation. A brief comparison of the convergence of different RL algorithms is performed. Several ball weights and various types of materials correspondent to bocce and boccia are tested, as well as different friction coefficients. Results show that the robot achieves a maximum success rate of 92.7% and mean of 75.7% for the best case. While learning to play these sports with the DDPG+HER algorithm, the robotic agent acquired some relevant skills that allowed it to win.

2020

Automatic Visual Inspection of Turbo Vanes produced by Investment Casting Process

Authors
Costa, V; Cardoso, R; Alves, B; Félix, R; Sousa, A; Reis, A;

Publication
SSIP 2020: 2020 3rd International Conference on Sensors, Signal and Image Processing, Prague, Czech Republic, October 9-11, 2020

Abstract
Visual inspection based systems are important tools to ensure the quality of manufactured parts in industry. This work presents an automatic visual inspection approach for defect detection in turbo vanes in the investment casting industry. The proposed method uses RANSAC for robust line and circle detection to extract relevant information to discriminate between a good part and a defected one. Then, using this data a feature vector is created serving as input to a SVM classifier that after the training phase is able to discriminate and classify between a good sample or not. To test the proposed approach a private database was created containing 650 turbo vanes (which gives 2600 different samples to train and test). On this database the proposed method achieved an average accuracy of 99.96%, an average false negative rate of 0.00% and an average false positive rate of 0.05%, using a 5-fold cross validation protocol, which demonstrates the success of the proposed method. Moreover, the proposed image processing pipeline was deployed into Raspberry Pi 4 Model B part of a visual inspection machine, and is working daily at ZCP-Zollern and Comandita Portugal, which proves the method's robustness. © 2020 Owner/Author.

2020

Modeling and control of a dc motor coupled to a non-rigid joint

Authors
Pinto, VH; Gonçalves, J; Costa, P;

Publication
Applied System Innovation

Abstract
Throughout this paper, the model, its parameter estimation and a controller for a solution using a DC motor with a gearbox worm, coupled to a non-rigid joint, will be presented. First, the modeling of a non-linear system based on a DC Motor with Worm Gearbox coupled to a non-rigid joint is presented. The full system was modeled based on the modeling of two sub-systems that compose it—a non-rigid joint configuration and the DC motor with the worm gearbox configuration. Despite the subsystems are interdependent, its modelling can be performed independently trough a carefully chosen set of experiments. Modeling accurately the system is crucial in order to simulate and know the expected performance. The estimation process and the proposed experimental setup are presented. This setup collects data from an absolute encoder, a load cell, voltage and current sensors. The data obtained from these sensors is presented and used to obtaining some physical parameters from both systems. Finally, through an optimization process, the remaining parameters are estimated, thus obtaining a realistic model of the complete system. Finally, the controller setup is presented and the results obtained are also presented. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.

2020

Low Cost Binaural System Based on the Echolocation

Authors
Moreira, TFM; Lima, J; Costa, P; Cunha, M;

Publication
FOURTH IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, ROBOT 2019, VOL 2

Abstract
Ultrasonic sensors offers attractive features at an affordable cost. The main problem faced by the use of these devices is that the data obtained are not so easy to interpret, restricting their efficiency. This paper describes a binaural sensor system that is able to determine the coordinates of an object or a target in a two-dimensional space, focusing on mathematical and signal processing techniques to provide accurate measurements and increase the system reliability. The proposed work consists only of low cost components, which aims to demonstrate that improvement is possible. Experimental tests, performed in different scenarios, reported good accuracy and repeatability of the measurements.

  • 89
  • 330