2020
Authors
Veloso, B; Gama, J;
Publication
IoT Streams for Data-Driven Predictive Maintenance and IoT, Edge, and Mobile for Embedded Machine Learning - Second International Workshop, IoT Streams 2020, and First International Workshop, ITEM 2020, Co-located with ECML/PKDD 2020, Ghent, Belgium, September 14-18, 2020, Revised Selected Papers
Abstract
The new 5G mobile communication system era brings a new set of communication devices that will appear on the market. These devices will generate data streams that require proper handling by machine algorithms. The processing of these data streams requires the design, development, and adaptation of appropriate machine learning algorithms. While stream processing algorithms include hyper-parameters for performance refinement, their tuning process is time-consuming and typically requires an expert to do the task. In this paper, we present an extension of the Self Parameter Tuning (SPT) optimization algorithm for data streams. We apply the Nelder-Mead algorithm to dynamically sized samples that converge to optimal settings in a double pass over data (during the exploration phase), using a relatively small number of data points. Additionally, the SPT automatically readjusts hyper-parameters when concept drift occurs. We did a set of experiments with well-known classification data sets and the results show that the proposed algorithm can outperform the results of previous hyper-parameter tuning efforts by human experts. The statistical results show that this extension is faster in terms of convergence and presents at least similar accuracy results when compared with the standard optimization techniques. © 2020, Springer Nature Switzerland AG.
2020
Authors
Barros, M; Veloso, B; Pereira, PM; Ribeiro, RP; Gama, J;
Publication
IoT Streams for Data-Driven Predictive Maintenance and IoT, Edge, and Mobile for Embedded Machine Learning - Second International Workshop, IoT Streams 2020, and First International Workshop, ITEM 2020, Co-located with ECML/PKDD 2020, Ghent, Belgium, September 14-18, 2020, Revised Selected Papers
Abstract
The transformation of industrial manufacturing with computers and automation with smart systems leads us to monitor and log of industrial equipment events. It is possible to apply analytic approaches, and to find interpretive results for strategic decision making, providing advantages such as failure detection and predictive maintenance. Over the last years, many researchers have been studying the application of machine learning techniques to improve such tasks. In this context, we develop a system capable of detect anomalies on an Air Production Unit (APU), taking into consideration the peak frequency of each sensor. The study started with the analysis of the sensors installed on the APU, defining its normal behavior and its failure mode. Using that information, we define rules, to monitor the APU, to detect anomalies on its components, and to predict possible failures. The definition of rules was based on the peak frequency analysis, which allowed the setting of boundaries of normality for the APU working modes and, thus, the identification of anomalies. © 2020, Springer Nature Switzerland AG.
2020
Authors
Koprinska, I; Kamp, M; Appice, A; Loglisci, C; Antonie, L; Zimmermann, A; Guidotti, R; Özgöbek, O; Ribeiro, RP; Gavaldà, R; Gama, J; Adilova, L; Krishnamurthy, Y; Ferreira, PM; Malerba, D; Medeiros, I; Ceci, M; Manco, G; Masciari, E; Ras, ZW; Christen, P; Ntoutsi, E; Schubert, E; Zimek, A; Monreale, A; Biecek, P; Rinzivillo, S; Kille, B; Lommatzsch, A; Gulla, JA;
Publication
PKDD/ECML Workshops
Abstract
2020
Authors
Teixeira, S; Gama, J; Amorim, P; Figueira, G;
Publication
ERCIM NEWS
Abstract
Algorithmic systems based on artificial intelligence (AI) increasingly play a role in decision-making processes, both in government and industry. These systems are used in areas such as retail, finances, and manufacturing. In the latter domain, the main priority is that the solutions are interpretable, as this characteristic correlates to the adoption rate of users (e.g., schedulers). However, more recently, these systems have been applied in areas of public interest, such as education, health, public administration, and criminal justice. The adoption of these systems in this domain, in particular the data-driven decision models, has raised questions about the risks associated with this technology, from which ethical problems may emerge. We analyse two important characteristics, interpretability and trustability, of AI-based systems in the industrial and public domains, respectively.
2021
Authors
Corizzo, R; Ceci, M; Fanaee T, H; Gama, J;
Publication
INFORMATION SCIENCES
Abstract
The increasing presence of renewable energy plants has created new challenges such as grid integration, load balancing and energy trading, making it fundamental to provide effective prediction models. Recent approaches in the literature have shown that exploiting spatio-temporal autocorrelation in data coming from multiple plants can lead to better predictions. Although tensor models and techniques are suitable to deal with spatio-temporal data, they have received little attention in the energy domain. In this paper, we propose a new method based on the Tucker tensor decomposition, capable of extracting a new feature space for the learning task. For evaluation purposes, we have investigated the performance of predictive clustering trees with the new feature space, compared to the original feature space, in three renewable energy datasets. The results are favorable for the proposed method, also when compared with state-of-the-art algorithms.
2021
Authors
Veloso, B; Gama, J; Malheiro, B;
Publication
Encyclopedia of Information Science and Technology, Fifth Edition - Advances in Information Quality and Management
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.