Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by João Gama

2023

XAI for Predictive Maintenance

Authors
Gama, J; Nowaczyk, S; Pashami, S; Ribeiro, RP; Nalepa, GJ; Veloso, B;

Publication
PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023

Abstract
The field of Explainable Predictive Maintenance (PM) is concerned with developing methods that can clarify how AI systems operate in the PM domain. One of the challenges of creating maintenance plans is integrating AI output with human decision-making processes and expertise. For AI to be helpful and trustworthy, fault predictions must be contextualized and easily comprehensible to humans. This involves providing tailored explanations to different actors depending on their roles and needs. For example, engineers can be connected to technical installation blueprints, while managers can evaluate system downtime costs, and lawyers can assess safety-threatening failures' potential liability. In many industries, black-box AI systems analyze sensor data to predict failures by detecting anomalies and deviations from typical behavior with impressive accuracy. However, PM is just one part of a broader context that aims to identify the most probable causes, develop a recovery plan, and estimate remaining useful life while providing alternative solutions. Achieving this requires complex interactions among various actors in industrial and decision-making processes. Our tutorial explores current trends, promising research directions in Explainable AI (XAI) relevant to Explainable Predictive Maintenance (XPM), and future challenges and open issues on this topic. We will also present three case studies that highlight XPM's challenges in bus and train operations and steel factories.

2009

Evaluating algorithms that learn from data streams

Authors
Gama, J; Rodrigues, PP; Sebastião, R;

Publication
Proceedings of the 2009 ACM Symposium on Applied Computing (SAC), Honolulu, Hawaii, USA, March 9-12, 2009

Abstract
Learning from data streams is a research area of increasing importance. Nowadays, several stream learning algorithms have been developed. Most of them learn decision models that continuously evolve over time, run in resource-aware environments, and detect and react to changes in the environment generating data. One important issue, not yet conveniently addressed, is the design of experimental work to evaluate and compare decision models that evolve over time. In this paper we propose a general framework for assessing the quality of streaming learning algorithms. We defend the use of Predictive Sequential error estimates over a sliding window to assess performance of learning algorithms that learn from open-ended data streams in non-stationary environments. This paper studies properties of convergence and methods to comparatively assess algorithms performance. Copyright 2009 ACM.

2012

Sequential Pattern Knowledge in Multi-Relational Learning

Authors
Ferreira, CA; Gama, J; Costa, VS;

Publication
COMPUTER AND INFORMATION SCIENCES II

Abstract
In this work we present XmuSer, a multi-relational framework suitable to explore temporal patterns available in multi-relational databases. xMuS er's main idea consists of exploiting frequent sequence mining, using an efficient and direct method to learn temporal patterns in the form of sequences. Grounded on a coding methodology and on the efficiency of sequence miners, we find the most interesting sequential patterns available and then map these findings into a new table, which encodes the multi-relational timed data using sequential patterns. In the last step of our framework, we use an ILP algorithm to learn a theory on the enlarged relational database that consists on the original multi-relational database and the new sequence relation. We evaluate our framework by addressing three classification problems.

1997

Regression Using Classification Algorithms

Authors
Torgo, L; Gama, J;

Publication
Intell. Data Anal.

Abstract
This article presents an alternative approach to the problem of regression. The methodology we describe allows the use of classification algorithms in regression tasks. From a practical point of view this enables the use of a wide range of existing machine learning (ML) systems in regression problems. In effect, most of the widely available systems deal with classification. Our method works as a pre-processing step in which the continuous goal variable values are discretised into a set of intervals. We use misclassification costs as a means to reflect the implicit ordering among these intervals. We describe a set of alternative discretisation methods and, based on our experimental results, justify the need for a search-based approach to choose the best method. The discretisation process is isolated from the classification algorithm, thus being applicable to virtually any existing system. The implemented system (RECLA) can thus be seen as a generic pre-processing tool. We have tested RECLA with three different classification systems and evaluated it in several regression data sets. Our experimental results confirm the validity of our search-based approach to class discretisation, and reveal the accuracy benefits of adding misclassification costs. © 1997 Elsevier Science B.Y.

2011

Preface

Authors
Suzuki, E; Sebag, M; Ando, S; Balcazar, JL; Billard, A; Bratko, I; Bredeche, N; Gama, J; Grunwald, P; Iba, H; Kersting, K; Peters, J; Washio, T;

Publication
Proceedings - IEEE International Conference on Data Mining, ICDM

Abstract

2011

Preface

Authors
Khan, L; Pechenizkiy, M; Zliobaite, I; Agrawal, C; Bifet, A; Delany, SJ; Dries, A; Fan, W; Gabrys, B; Gama, J; Gao, J; Gopalkrishnan, V; Holmes, G; Katakis, I; Kuncheva, L; Van Leeuwen, M; Masud, M; Menasalvas, E; Minku, L; Pfahringer, B; Polikar, R; Rodrigues, PP; Tsoumakas, G; Tsymbal, A;

Publication
Proceedings - IEEE International Conference on Data Mining, ICDM

Abstract

  • 50
  • 91