Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by João Gama

2012

Bus Bunching detection: A sequence mining approach

Authors
Moreira Matias, L; Ferreira, C; Gama, J; Mendes Moreira, J; De Sousa, JF;

Publication
CEUR Workshop Proceedings

Abstract
Mining public transportation networks is a growing and explosive challenge due to the increasing number of information available. In highly populated urban zones, the vehicles can often fail the schedule. Such fails cause headway deviations (HD) between high-frequency bus pairs. In this paper, we propose to identify systematic HD which usually provokes the phenomenon known as Bus Bunching (BB). We use the PrefixSpan algorithm to accurately mine sequences of bus stops where multiple HD frequently emerges, forcing two or more buses to clump. Our results are promising: 1) we demonstrated that the BB origin can be modeled like a sequence mining problem where 2) the discovered patterns can easily identify the route schedule points to adjust in order to mitigate such events.

2012

Event and anomaly detection using Tucker3 decomposition

Authors
Tork, HF; Oliveira, M; Gama, J; Malinowski, S; Morla, R;

Publication
CEUR Workshop Proceedings

Abstract
Failure detection in telecommunication networks is a vital task. So far, several supervised and unsupervised solutions have been provided for discovering failures in such networks. Among them unsupervised approaches has attracted more attention since no label data is required [1]. Often, network devices are not able to provide information about the type of failure. In such cases, unsupervised setting is more appropriate for diagnosis. Among unsupervised approaches, Principal Component Analysis (PCA) has been widely used for anomaly detection literature and can be applied to matrix data (e.g. Users-Features). However, one of the important properties of network data is their temporal sequential nature. So considering the interaction of dimensions over a third dimension, such as time, may provide us better insights into the nature of network failures. In this paper we demonstrate the power of three-way analysis to detect events and anomalies in time-evolving network data.

2012

Holistic distributed stream clustering for smart grids

Authors
Rodrigues, PP; Gama, J;

Publication
CEUR Workshop Proceedings

Abstract
Smart grids consist of millions of automated electronic meters that will be installed in electricity distribution networks and connected to servers that will manage grid supervision, billing and customer services. World sustainability regarding energy management will definitely rely on such grids, so smart grids need also to be sustainable themselves. This sustainability depends on several research problems that emerge from this new setting (from power balance to energy markets) requiring new approaches for knowledge discovery and decision support. This paper presents a holistic distributed stream clustering view of possible solutions for those problems, supported by previous research in related domains. The approach is based on two orthogonal clustering algorithms, combined for a holistic clustering of the grid. Experimental results are included to illustrate the benefits of each algorithm, while the proposal is discussed in terms of application to smart grid problems. This holistic approach could be used to help solving some of the smart grid intelligent layer research problems, thus improving global sustainability.

2012

Semi-supervised learning: Predicting activities in Android environment

Authors
Lopes, A; Mendes Moreira, J; Gama, J;

Publication
CEUR Workshop Proceedings

Abstract
Predicting activities from data gathered with sensors gained importance over the years with the objective of getting a better understanding of the human body. The purpose of this paper is to show that predicting activities on an Android phone is possible. We take into consideration different classifiers, their accuracy using different approaches (hierarchical and one step classification) and limitations of the mobile itself like battery and memory usage. A semi-supervised learning approach is taken in order to compare its results against supervised learning. The objective is to discover if the application can be adapted to the user providing a better solution for this problem. The activities predicted are the most usual in everyday life: walking, running, standing idle and sitting. An android prototype, embedding the software MOA, was developed to experimentally evaluate the ideas proposed here.

2012

A survey on learning from data streams: current and future trends

Authors
Gama, J;

Publication
Progress in AI

Abstract
Nowadays, there are applications in which the data are modeled best not as persistent tables, but rather as transient data streams. In this article, we discuss the limitations of current machine learning and data mining algorithms. We discuss the fundamental issues in learning in dynamic environments like continuously maintain learning models that evolve over time, learning and forgetting, concept drift and change detection. Data streams produce a huge amount of data that introduce new constraints in the design of learning algorithms: limited computational resources in terms of memory, cpu power, and communication bandwidth. We present some illustrative algorithms, designed to taking these constrains into account, for decision-tree learning, hierarchical clustering and frequent pattern mining. We identify the main issues and current challenges that emerge in learning from data streams that open research lines for further developments. © 2011 Springer-Verlag.

2011

Ubiquitous Knowledge Discovery Introduction

Authors
Gama, J; May, M;

Publication
INTELLIGENT DATA ANALYSIS

Abstract

  • 52
  • 91