Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by João Gama

2023

Bayesian Federated Learning: A Survey

Authors
Cao, LB; Chen, H; Fan, XH; Gama, J; Ong, YS; Kumar, V;

Publication
PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023

Abstract
Federated learning (FL) demonstrates its advantages in integrating distributed infrastructure, communication, computing and learning in a privacy-preserving manner. However, the robustness and capabilities of existing FL methods are challenged by limited and dynamic data and conditions, complexities including heterogeneities and uncertainties, and analytical explainability. Bayesian federated learning (BFL) has emerged as a promising approach to address these issues. This survey presents a critical overview of BFL, including its basic concepts, its relations to Bayesian learning in the context of FL, and a taxonomy of BFL from both Bayesian and federated perspectives. We categorize and discuss client- and server-side and FLbased BFL methods and their pros and cons. The limitations of the existing BFL methods and the future directions of BFL research further address the intricate requirements of real-life FL applications.

2023

Knowledge-driven Analytics and Systems Impacting Human Quality of Life- Neurosymbolic AI, Explainable AI and Beyond

Authors
Ukil, A; Gama, J; Jara, AJ; Marin, L;

Publication
PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023

Abstract
The management of knowledge-driven artificial intelligence technologies is essential in order to evaluate their impact on human life and society. Social networks and tech use can have a negative impact on us physically, emotionally, socially and mentally. On the other hand, intelligent systems can have a positive effect on people's lives. Currently, we are witnessing the power of large language models (LLMs) like chatGPT and its influence towards the society. The objective of the workshop is to contribute to the advancement of intelligent technologies designed to address the human condition. This could include precise and personalized medicine, better care for elderly people, reducing private data leaks, using AI to manage resources better, using AI to predict risks, augmenting human capabilities, and more. The workshop's objective is to present research findings and perspectives that demonstrate how knowledge-enabled technologies and applications improve human well-being. This workshop indeed focuses on the impacts at different granularity levels made by Artificial Intelligence (AI) research on the micro granular level, where the daily or regular functioning of human life is affected, and also the macro granulate level, where the long-term or far-future effects of artificial intelligence on people's lives and the human society could be pretty high. In conclusion, this workshop explores how AI research can potentially address the most pressing challenges facing modern societies, and how knowledge management can potentially contribute to these solutions.

2024

Improving hyper-parameter self-tuning for data streams by adapting an evolutionary approach

Authors
Moya, AR; Veloso, B; Gama, J; Ventura, S;

Publication
DATA MINING AND KNOWLEDGE DISCOVERY

Abstract
Hyper-parameter tuning of machine learning models has become a crucial task in achieving optimal results in terms of performance. Several researchers have explored the optimisation task during the last decades to reach a state-of-the-art method. However, most of them focus on batch or offline learning, where data distributions do not change arbitrarily over time. On the other hand, dealing with data streams and online learning is a challenging problem. In fact, the higher the technology goes, the greater the importance of sophisticated techniques to process these data streams. Thus, improving hyper-parameter self-tuning during online learning of these machine learning models is crucial. To this end, in this paper, we present MESSPT, an evolutionary algorithm for self-hyper-parameter tuning for data streams. We apply Differential Evolution to dynamically-sized samples, requiring a single pass-over of data to train and evaluate models and choose the best configurations. We take care of the number of configurations to be evaluated, which necessarily has to be reduced, thus making this evolutionary approach a micro-evolutionary one. Furthermore, we control how our evolutionary algorithm deals with concept drift. Experiments on different learning tasks and over well-known datasets show that our proposed MESSPT outperforms the state-of-the-art on hyper-parameter tuning for data streams.

2019

Uma Análise sobre a Evolução das Preferências Musicais dos Usuários Utilizando Redes de Similaridade Temporal

Authors
Fernandes Pereira, FS; Linhares, CDG; Ponciano, JR; Gama, J; Amo, Sd; Oliveira, GMB;

Publication
Braz. J. Inf. Syst.

Abstract

2025

Unveiling Group-Specific Distributed Concept Drift: A Fairness Imperative in Federated Learning

Authors
Salazar, T; Gama, J; Araújo, H; Abreu, PH;

Publication
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Abstract
In the evolving field of machine learning, ensuring group fairness has become a critical concern, prompting the development of algorithms designed to mitigate bias in decision-making processes. Group fairness refers to the principle that a model's decisions should be equitable across different groups defined by sensitive attributes such as gender or race, ensuring that individuals from privileged groups and unprivileged groups are treated fairly and receive similar outcomes. However, achieving fairness in the presence of group-specific concept drift remains an unexplored frontier, and our research represents pioneering efforts in this regard. Group-specific concept drift refers to situations where one group experiences concept drift over time, while another does not, leading to a decrease in fairness even if accuracy (ACC) remains fairly stable. Within the framework of federated learning (FL), where clients collaboratively train models, its distributed nature further amplifies these challenges since each client can experience group-specific concept drift independently while still sharing the same underlying concept, creating a complex and dynamic environment for maintaining fairness. The most significant contribution of our research is the formalization and introduction of the problem of group-specific concept drift and its distributed counterpart, shedding light on its critical importance in the field of fairness. In addition, leveraging insights from prior research, we adapt an existing distributed concept drift adaptation algorithm to tackle group-specific distributed concept drift, which uses a multimodel approach, a local group-specific drift detection mechanism, and continuous clustering of models over time. The findings from our experiments highlight the importance of addressing group-specific concept drift and its distributed counterpart to advance fairness in machine learning.

2024

A Neuro-Symbolic Explainer for Rare Events: A Case Study on Predictive Maintenance

Authors
Gama, J; Ribeiro, RP; Mastelini, SM; Davari, N; Veloso, B;

Publication
CoRR

Abstract

  • 86
  • 94