Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Fernando Silva

2023

Jay: A software framework for prototyping and evaluating offloading applications in hybrid edge clouds

Authors
Silva, J; Marques, ERB; Lopes, LMB; Silva, FMA;

Publication
SOFTWARE-PRACTICE & EXPERIENCE

Abstract
We present Jay, a software framework for offloading applications in hybrid edge clouds. Jay provides an API, services, and tools that enable mobile application developers to implement, instrument, and evaluate offloading applications using configurable cloud topologies, offloading strategies, and job types. We start by presenting Jay's job model and the concrete architecture of the framework. We then present the programming API with several examples of customization. Then, we turn to the description of the internal implementation of Jay instances and their components. Finally, we describe the Jay Workbench, a tool that allows the setup, execution, and reproduction of experiments with networks of hosts with different resource capabilities organized with specific topologies. The complete source code for the framework and workbench is provided in a GitHub repository.

2023

MHVG2MTS: Multilayer Horizontal Visibility Graphs for Multivariate Time Series Analysis

Authors
Silva, VF; Silva, ME; Ribeiro, P; Silva, FMA;

Publication
CoRR

Abstract

2018

GoT-WAVE: Temporal network alignment using graphlet-orbit transitions

Authors
Aparício, DO; Ribeiro, P; Milenkovic, T; Silva, F;

Publication
CoRR

Abstract

2017

Temporal Network Comparison using Graphlet-orbit Transitions

Authors
Aparício, DO; Pinto Ribeiro, PM; Silva, FMA;

Publication
CoRR

Abstract

2024

Multilayer quantile graph for multivariate time series analysis and dimensionality reduction

Authors
Silva, VF; Silva, ME; Ribeiro, P; Silva, F;

Publication
INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS

Abstract
In recent years, there has been a surge in the prevalence of high- and multidimensional temporal data across various scientific disciplines. These datasets are characterized by their vast size and challenging potential for analysis. Such data typically exhibit serial and cross-dependency and possess high dimensionality, thereby introducing additional complexities to conventional time series analysis methods. To address these challenges, a recent and complementary approach has emerged, known as network-based analysis methods for multivariate time series. In univariate settings, quantile graphs have been employed to capture temporal transition properties and reduce data dimensionality by mapping observations to a smaller set of sample quantiles. To confront the increasingly prominent issue of high dimensionality, we propose an extension of quantile graphs into a multivariate variant, which we term Multilayer Quantile Graphs. In this innovative mapping, each time series is transformed into a quantile graph, and inter-layer connections are established to link contemporaneous quantiles of pairwise series. This enables the analysis of dynamic transitions across multiple dimensions. In this study, we demonstrate the effectiveness of this new mapping using synthetic and benchmark multivariate time series datasets. We delve into the resulting network's topological structures, extract network features, and employ these features for original dataset analysis. Furthermore, we compare our results with a recent method from the literature. The resulting multilayer network offers a significant reduction in the dimensionality of the original data while capturing serial and cross-dimensional transitions. This approach facilitates the characterization and analysis of large multivariate time series datasets through network analysis techniques.

  • 19
  • 19