Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Ricardo Rocha

2004

Concurrent table accesses in parallel tabled logic programs

Authors
Rocha, R; Silva, F; Costa, VS;

Publication
EURO-PAR 2004 PARALLEL PROCESSING, PROCEEDINGS

Abstract
Tabling is an implementation technique that improves the declarativeness and expressiveness of Prolog by reusing answers to subgoals. The declarative nature of tabled logic programming suggests that it might be amenable to parallel execution. On the other hand, the complexity of the tabling mechanism, and the existence of a shared resource, the table, may suggest that parallelism might be limited and never scale for real applications. In this work, we propose three alternative locking schemes to deal with concurrent table accesses, and we study their impact on the OPTYap parallel tabling system using a set of tabled programs.

2005

On applying or-parallelism and tabling to logic programs

Authors
Rocha, R; Silva, F; Costa, VS;

Publication
THEORY AND PRACTICE OF LOGIC PROGRAMMING

Abstract
Logic programming languages, such as Prolog, provide a high-level, declarative approach to programming. Logic Programming offers great potential for implicit parallelism, thus allowing parallel systems to often reduce a program's execution time without programmer intervention. We believe that for complex applications that take several hours, if not days, to return an answer, even limited speedups from parallel execution can directly translate to very significant productivity gains. It has been argued that Prolog's evaluation strategy - SLD resolution often limits the potential of the logic programming paradigm. The past years have therefore seen widening efforts at increasing Prolog's declarativeness and expressiveness. Tabling has proved to be a viable technique to efficiently overcome SLD's susceptibility to infinite loops and redundant subcomputations. Our research demonstrates that implicit or-parallelism is a natural fit for logic programs with tabling. To substantiate this belief, we have designed and implemented an or-parallel tabling engine - OPTYap - and we used a shared-memory parallel machine to evaluate its performance. To the best of our knowledge, OPTYap is the first implementation of a parallel tabling engine for logic programming systems. OPTYap builds on Yap's efficient sequential Prolog engine. Its execution model is based on the SLG-WAM for tabling, and on the environment copying for or-parallelism. Preliminary results indicate that the mechanisms proposed to parallelize search in the context of SLD resolution can indeed be effectively and naturally generalized to parallelize tabled computations, and that the resulting systems can achieve good performance on shared-memory parallel machines. More importantly, it emphasizes our belief that through applying or-parallelism and tabling to logic programs the range of applications for Logic Programming can be increased.

2005

IMPACT: Innovative models for prolog with advanced control and tabling

Authors
Rocha, R; Lopes, R; Silva, F; Costa, VS;

Publication
LOGIC PROGRAMMING, PROCEEDINGS

Abstract

2005

Dynamic mixed-strategy evaluation of tabled logic programs

Authors
Rocha, R; Silva, F; Costa, VS;

Publication
LOGIC PROGRAMMING, PROCEEDINGS

Abstract
Tabling is an implementation technique that improves the declarativeness and expressiveness of Prolog by reusing answers to subgoals. During tabled execution, several decisions have to be made. These are determined by the scheduling strategy. Whereas a strategy can achieve very good performance for certain applications, for others it might add overheads and even lead to unacceptable inefficiency. The ability of using multiple strategies within the same evaluation can be a means of achieving the best possible performance. In this work, we present how the YapTab system was designed to support dynamic mixed-strategy evaluation of the two most successful tabling scheduling strategies: batched scheduling and local scheduling.

2018

Table Space Designs For Implicit and Explicit Concurrent Tabled Evaluation

Authors
Areias, M; Rocha, R;

Publication
CoRR

Abstract

2023

Releasing Memory with Optimistic Access: A Hybrid Approach to Memory Reclamation and Allocation in Lock-Free Programs

Authors
Moreno, P; Rocha, R;

Publication
PROCEEDINGS OF THE 35TH ACM SYMPOSIUM ON PARALLELISM IN ALGORITHMS AND ARCHITECTURES, SPAA 2023

Abstract
Lock-free data structures are an important tool for the development of concurrent programs as they provide scalability, low latency and avoid deadlocks, livelocks and priority inversion. However, they require some sort of additional support to guarantee memory reclamation. The Optimistic Access (OA) method has most of the desired properties for memory reclamation, but since it allows memory to be accessed after being reclaimed, it is incompatible with the traditional memory management model. This renders it unable to release memory to the memory allocator/operating system, and, as such, it requires a complex memory recycling mechanism. In this paper, we extend the lock-free general purpose memory allocator LRMalloc to support the OA method. By doing so, we are able to simplify the memory reclamation method implementation and also allow memory to be reused by other parts of the same process. We further exploit the virtual memory system provided by the operating system and hardware in order to make it possible to release reclaimed memory to the operating system.

  • 18
  • 19