2023
Authors
Monteiro, F; Sousa, A;
Publication
JOURNAL OF APPLIED RESEARCH IN HIGHER EDUCATION
Abstract
PurposeThe purpose of the article is to develop an innovative pedagogic tool: an escape room board game to be played in-class, targeting an introduction to an ethics course for engineering students. The design is student-centred and aims to increase students' appreciation, commitment and motivation to learning ethics, a challenging endeavour for many technological students.Design/methodology/approachThe methodology included the design, development and in-class application of the mentioned game. After application, perception data from students were collected with pre- and post-action questionnaire, using a quasi-experimental method.FindingsThe results allow to conclude that the developed game persuaded students be in class in an active way. The game mobilizes body and mind to the learning process with many associated advantages to foster students' motivation, curiosity, interest, commitment and the need for individual reflection after information search.Research limitations/implicationsThe main limitation of the game is its applicability to large classes (it has been successfully tested with a maximum of 65 students playing simultaneously in the same room).Originality/valueThe originalities and contributions include the presented game that helped to captivate students to ethics area, a serious problem felt by educators and researchers in this area. This study will be useful to educators of ethics in engineering and will motivate to design tools for a similar pedagogical approach, even more so in areas where students are not especially motivated. The developed tool is available from the authors at no expense.
2023
Authors
da Silva, DQ; Rodrigues, TF; Sousa, AJ; dos Santos, FN; Filipe, V;
Publication
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2023, PT II
Abstract
Selective thinning is a crucial operation to reduce forest ignitable material, to control the eucalyptus species and maximise its profitability. The selection and removal of less vigorous stems allows the remaining stems to grow healthier and without competition for water, sunlight and nutrients. This operation is traditionally performed by a human operator and is time-intensive. This work simplifies selective thinning by removing the stem selection part from the human operator's side using a computer vision algorithm. For this, two distinct datasets of eucalyptus stems (with and without foliage) were built and manually annotated, and three Deep Learning object detectors (YOLOv5, YOLOv7 and YOLOv8) were tested on real context images to perform instance segmentation. YOLOv8 was the best at this task, achieving an Average Precision of 74% and 66% on non-leafy and leafy test datasets, respectively. A computer vision algorithm for automatic stem selection was developed based on the YOLOv8 segmentation output. The algorithm managed to get a Precision above 97% and a 81% Recall. The findings of this work can have a positive impact in future developments for automatising selective thinning in forested contexts.
2024
Authors
da Silva, DQ; Louro, F; dos Santos, FN; Filipe, V; Sousa, AJ; Cunha, M; Carvalho, JL;
Publication
ROBOT 2023: SIXTH IBERIAN ROBOTICS CONFERENCE, VOL 2
Abstract
Forest soil ripping is a practice that involves revolving the soil in a forest area to prepare it for planting or sowing operations. Advanced sensing systems may help in this kind of forestry operation to assure ideal ripping depth and intensity, as these are important aspects that have potential to minimise the environmental impact of forest soil ripping. In this work, a cost-effective contactless system - capable of detecting and mapping soil ripping depth in real-time - was developed and tested in laboratory and in a realistic forest scenario. The proposed system integrates two single-point LiDARs and a GNSS sensor. To evaluate the system, ground-truth data was manually collected on the field during the operation of the machine with a ripping implement. The proposed solution was tested in real conditions, and the results showed that the ripping depth was estimated with minimal error. The accuracy and mapping ripping depth ability of the low-cost sensor justify their use to support improved soil preparation with machines or robots toward sustainable forest industry.
2024
Authors
Almeida, F; Leao, G; Sousa, A;
Publication
ROBOT 2023: SIXTH IBERIAN ROBOTICS CONFERENCE, VOL 2
Abstract
Robot Learning is one of the most important areas in Robotics and its relevance has only been increasing. The Robot Operating System (ROS) has been one of the most used architectures in Robotics but learning it is not a simple task. Additionally, ROS 1 is reaching its end-of-life and a lot of users are yet to make the transition to ROS 2. Reinforcement Learning (RL) and Robotics are rarely taught together, creating greater demand for tools to teach all these components. This paper aims to develop a learning kit that can be used to teach Robot Learning to students with different levels of expertise in Robotics. This kit works with the Flatland simulator using open-source free software, namely the OpenAI Gym and Stable-Baselines3 packages, and contains tutorials that introduce the user to the simulation environment as well as how to use RL to train the robot to perform different tasks. User tests were conducted to better understand how the kit performs, showing very positive feedback, with most participants agreeing that the kit provided a productive learning experience.
2024
Authors
Moreira, T; Santos, FN; Santos, L; Sarmento, J; Terra, F; Sousa, A;
Publication
ROBOT 2023: SIXTH IBERIAN ROBOTICS CONFERENCE, VOL 2
Abstract
Climate change, limited natural resources, and the increase in the world's population impose society to produce food more sustainably, with lower energy and water consumption. The use of robots in agriculture is one of the most promising solutions to change the paradigm of agricultural practices. Agricultural robots should be seen as a way to make jobs easier and lighter, and also a way for people who do not have agricultural skills to produce their food. The PixelCropRobot is a low-cost, open-source robot that can perform the processes of monitoring and watering plants in small gardens. This work proposes a mission supervisor for PixelCropRobot, and general agricultural robots, and presents a prototype of user interface to this mission supervision. The communication between the mission supervisor and the other components of the system is done using ROS2 and MQTT, and mission file standardized. The mission supervisor receives a prescription map, with information about the respective mission, and decomposes them into simple tasks. An A* algorithm then defines the priority of each mission that depends on factors like water requirements, and distance travelled. This concept of mission supervisor was deployed into the PixelCropRobot and was validated in real conditions, showing a enormous potential to be extended to other agricultural robots.
2024
Authors
da Silva, DQ; Dos Santos, FN; Filipe, V; Sousa, AJ; Pires, EJS;
Publication
IEEE ACCESS
Abstract
Stand-level forest tree species perception and identification are needed for monitoring-related operations, being crucial for better biodiversity and inventory management in forested areas. This paper contributes to this knowledge domain by researching tree trunk types multispectral perception at stand-level. YOLOv5 and YOLOv8 - Convolutional Neural Networks specialized at object detection and segmentation - were trained to detect and segment two tree trunk genus (pine and eucalyptus) using datasets collected in a forest region in Portugal. The dataset comprises only two categories, which correspond to the two tree genus. The datasets were manually annotated for object detection and segmentation with RGB and RGB-NIR images, and are publicly available. The Small variant of YOLOv8 was the best model at detection and segmentation tasks, achieving an F1 measure above 87% and 62%, respectively. The findings of this study suggest that the use of extended spectra, including Visible and Near Infrared, produces superior results. The trained models can be integrated into forest tractors and robots to monitor forest genus across different spectra. This can assist forest managers in controlling their forest stands.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.