Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Paulo José Costa

2022

Data Matrix Based Low Cost Autonomous Detection of Medicine Packages

Authors
Lima, J; Rocha, C; Rocha, L; Costa, P;

Publication
APPLIED SCIENCES-BASEL

Abstract
Counterfeit medicine is still a crucial problem for healthcare systems, having a huge impact in worldwide health and economy. Medicine packages can be traced from the moment of their production until they are delivered to the costumers through the use of Data Matrix codes, unique identifiers that can validate their authenticity. Currently, many practitioners at hospital pharmacies have to manually scan such codes one by one, a very repetitive and burdensome task. In this paper, a system which can simultaneously scan multiple Data Matrix codes and autonomously introduce them into an authentication database is proposed for the Hospital Pharmacy of the Centro Hospitalar de Vila Nova de Gaia/Espinho, E.P.E. Relevant features are its low cost and its seamless integration in their infrastructure. The results of the experiments were encouraging, and with upgrades such as real-time feedback of the code's validation and increased robustness of the hardware system, it is expected that the system can be used as a real support to the pharmacists.

2022

Map Coverage of LoRaWAN Signal's Employing GPS from Mobile Devices

Authors
Brito, T; Mendes, J; Zorawski, M; Azevedo, BF; Khalifeh, A; Fernandes, FP; Pereira, AI; Lima, J; Costa, P;

Publication
OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, OL2A 2022

Abstract
Forests are remote areas with uneven terrain, so it is costly to map the range of signals that enable the implementation of systems based on wireless and long-distance communication. Even so, the interest in Internet of Things (IoT) functionalities for forest monitoring systems has increasingly attracted the attention of several researchers. This work demonstrates the development of a platform that uses the GPS technology of mobile devices to map the signals of a LoRaWAN Gateway. Therefore, the proposed system is based on concatenating two messages to optimize the LoRaWAN transmission using the Global Position System (GPS) data from a mobile device. With the proposed approach, it is possible to guarantee the data transmission when finding the ideal places to fix nodes regarding the coverage of LoRaWAN because the Gateway bandwidth will not be fulfilled. The tests indicate that different changes in the relief and large bodies drastically affect the signal provided by the Gateway. This work demonstrates that mapping the Gateway's signal is essential to attach modules in the forest, agriculture zones, or even smart cities.

2022

Object Detection for Indoor Localization System

Authors
Braun, J; Mendes, J; Pereira, AI; Lima, J; Costa, P;

Publication
OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, OL2A 2022

Abstract
The urge for robust and reliable localization systems for autonomous mobile robots (AMR) is increasing since the demand for these automated systems is rising in service, industry, and other areas of the economy. The localization of AMRs is one of the crucial challenges, and several approaches exist to solve this. The most well-known localization systems are based on LiDAR data due to their reliability, accuracy, and robustness. One standard method is to match the reference map information with the actual readings from LiDAR or camera sensors, allowing localization to be performed. However, this approach has difficulties handling anything that does not belong to the original map since it affects the matching algorithm's performance. Therefore, they should be considered outliers. In this paper, a deep learning-based object detection algorithm is not only used for detection but also to classify them as outliers from the localization's perspective. This is an innovative approach to improve the localization results in a realmobile platform. Results are encouraging, and the proposed methodology is being tested in a real robot.

2022

Volume Estimation of an Indoor Space with LiDAR Scanner

Authors
Bierende, J; Braun, J; Costa, P; Lima, J; Pereira, AI;

Publication
OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, OL2A 2022

Abstract
Three-dimensional scanning is a task of great importance for our modern society and has brought significant advances in the precision of material inventory. These sensors map the material surface continuously, allowing real-time inventory monitoring. Most technologies are expensive because this process is complex, and even inexpensive ones are considerate smart investments for the average user. Therefore, this work presents the simulation of a low-cost time-of-flight based 3D scanning system that performs the volume estimation of an object-filled indoor space after a voxelization process. The system consists of a 2D LIDAR scanner that performs an azimuthal scan of 180. through its rotating platform and a motor that rotates the platform in angle inclination.

2023

Modelling of a Vibration Robot Using Localization Ground Truth Assisted by ArUCo Markers

Authors
Matos, D; Lima, J; Rohrich, R; Oliveira, A; Valente, A; Costa, P; Costa, P;

Publication
ROBOTICS IN NATURAL SETTINGS, CLAWAR 2022

Abstract
Simulators have been increasingly used on development and tests on several areas. They allow to speed up the development without damage and no extra costs. On realistic simulators, where kinematics play an important role, the modelling process should be imported for each component to be accurately simulated. Some robots are not yet modelled, as for example the Monera. This paper presents a model of a small vibration robot (Monera) that is acquired in a developed test-bed. A localisation ground truth is used to acquire the position of the Monera with actuating it. Linear and angular speeds acquired from real experiments allow to validate the proposed methodology.

2023

Hybrid Legged-Wheeled Robotic Platforms: Survey on Existing Solutions

Authors
Moreira, J; Soares, IN; Lima, J; Pinto, VH; Costa, P;

Publication
ROBOTICS IN NATURAL SETTINGS, CLAWAR 2022

Abstract
This survey analyses and compares ten different robots capable of hybrid locomotion in an attempt to elucidate the readers on several aspects of importance when designing and implementing a legged-wheeled vehicle. With this purpose in mind, the robots are compared based on their goals, kinematic configurations, joint specifications and overall performance. In this text, their variety and versatility is presented, justifying their use in real-world scenarios.

  • 20
  • 29