2025
Authors
Gonçalves, A; Varajão, J; Moura Oliveira, P; Moura, I;
Publication
Digital Government: Research and Practice
Abstract
2025
Authors
de Moura Oliveira, P; Vrancic, D;
Publication
IFAC-PapersOnLine
Abstract
2025
Authors
P.B. de Moura Oliveira; J. Boaventura Cunha;
Publication
IFAC-PapersOnLine
Abstract
2025
Authors
Caetano, R; Oliveira, JM; Ramos, P;
Publication
MATHEMATICS
Abstract
Accurate demand forecasting is essential for retail operations as it directly impacts supply chain efficiency, inventory management, and financial performance. However, forecasting retail time series presents significant challenges due to their irregular patterns, hierarchical structures, and strong dependence on external factors such as promotions, pricing strategies, and socio-economic conditions. This study evaluates the effectiveness of Transformer-based architectures, specifically Vanilla Transformer, Informer, Autoformer, ETSformer, NSTransformer, and Reformer, for probabilistic time series forecasting in retail. A key focus is the integration of explanatory variables, such as calendar-related indicators, selling prices, and socio-economic factors, which play a crucial role in capturing demand fluctuations. This study assesses how incorporating these variables enhances forecast accuracy, addressing a research gap in the comprehensive evaluation of explanatory variables within multiple Transformer-based models. Empirical results, based on the M5 dataset, show that incorporating explanatory variables generally improves forecasting performance. Models leveraging these variables achieve up to 12.4% reduction in Normalized Root Mean Squared Error (NRMSE) and 2.9% improvement in Mean Absolute Scaled Error (MASE) compared to models that rely solely on past sales. Furthermore, probabilistic forecasting enhances decision making by quantifying uncertainty, providing more reliable demand predictions for risk management. These findings underscore the effectiveness of Transformer-based models in retail forecasting and emphasize the importance of integrating domain-specific explanatory variables to achieve more accurate, context-aware predictions in dynamic retail environments.
2025
Authors
Palley, B; Martins, JP; Bernardo, H; Rossetti, R;
Publication
URBAN SCIENCE
Abstract
Artificial Intelligence has recently expanded across various applications. Machine Learning, a subset of Artificial Intelligence, is a powerful technique for identifying patterns in data to support decision making and managing the increasing volume of information. Simultaneously, Digital Twins have been applied in several fields. In this context, combining Digital Twins, Machine Learning, and Smart Buildings offers significant potential to improve energy efficiency and operational effectiveness in building management. This review aims to identify and analyze studies that explore the application of Machine Learning and Digital Twins for operation and energy management in Smart Buildings, providing an updated perspective on these rapidly evolving topics. The methodology follows the PRISMA guidelines for systematic reviews, using Scopus and Web of Science databases. This review identifies the main concepts, objectives, and trends emerging from the literature. Furthermore, the findings confirm the recent growth in research combining Machine Learning and Digital Twins for building management, revealing diverse approaches, tools, methods, and challenges. Finally, this paper highlights existing research gaps and outlines opportunities for future investigation.
2025
Authors
P.B. de Moura Oliveira;
Publication
IFAC-PapersOnLine
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.