Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2025

Extending the Quantitative Pattern-Matching Paradigm

Authors
Alves, S; Kesner, D; Ramos, M;

Publication
PROGRAMMING LANGUAGES AND SYSTEMS, APLAS 2024

Abstract
We show how (well-established) type systems based on non-idempotent intersection types can be extended to characterize termination properties of functional programming languages with pattern matching features. To model such programming languages, we use a (weak and closed) lambda-calculus integrating a pattern matching mechanism on algebraic data types (ADTs). Remarkably, we also show that this language not only encodes Plotkin's CBV and CBN lambda-calculus as well as other subsuming frameworks, such as the bang-calculus, but can also be used to interpret the semantics of effectful languages with exceptions. After a thorough study of the untyped language, we introduce a type system based on intersection types, and we show through purely logical methods that the set of terminating terms of the language corresponds exactly to that of well-typed terms. Moreover, by considering non-idempotent intersection types, this characterization turns out to be quantitative, i.e. the size of the type derivation of a term t gives an upper bound for the number of evaluation steps from t to its normal form.

2025

CBVLM: Training-free Explainable Concept-based Large Vision Language Models for Medical Image Classification

Authors
Patrício, C; Torto, IR; Cardoso, JS; Teixeira, LF; Neves, JC;

Publication
CoRR

Abstract

2025

Modeling Electricity Markets and Energy Systems: Challenges and Opportunities

Authors
Aliabadi, DE; Pinto, T;

Publication
ENERGIES

Abstract
[No abstract available]

2025

Identification and explanation of disinformation in wiki data streams

Authors
Arriba Pérez, Fd; García Méndez, S; Leal, F; Malheiro, B; Burguillo, JC;

Publication
Integrated Computer-Aided Engineering

Abstract
Social media platforms, increasingly used as news sources for varied data analytics, have transformed how information is generated and disseminated. However, the unverified nature of this content raises concerns about trustworthiness and accuracy, potentially negatively impacting readers’ critical judgment due to disinformation. This work aims to contribute to the automatic data quality validation field, addressing the rapid growth of online content on wiki pages. Our scalable solution includes stream-based data processing with feature engineering, feature analysis and selection, stream-based classification, and real-time explanation of prediction outcomes. The explainability dashboard is designed for the general public, who may need more specialized knowledge to interpret the model’s prediction. Experimental results on two datasets attain approximately 90% values across all evaluation metrics, demonstrating robust and competitive performance compared to works in the literature. In summary, the system assists editors by reducing their effort and time in detecting disinformation.

2025

A New Closed-Loop Control Paradigm Based on Process Moments

Authors
Vrancic, D; Bisták, P; Huba, M; Oliveira, PM;

Publication
MATHEMATICS

Abstract
The paper presents a new control concept based on the process moment instead of the process states or the process output signal. The control scheme is based on separate control of reference tracking and disturbance rejection. The tracking control is achieved by additionally feeding the input of the process model by the scaled output signal of the process model. The advantage of such feedback is that the final state of the process output can be analytically calculated and used for control instead of the actual process output value. The disturbance rejection, including model imperfections, is controlled by feeding back the filtered difference between the process output and the model output to the process input. The performance of tracking and disturbance rejection is simply controlled by two user-defined gains. Several examples have shown that the new control method provides very good and stable tracking and disturbance rejection performance.

2025

FedGS: Federated Gradient Scaling for Heterogeneous Medical Image Segmentation

Authors
Schutte, P; Corbetta, V; Beets-Tan, R; Silva, W;

Publication
Lecture Notes in Computer Science - Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 Workshops

Abstract

  • 12
  • 4030