Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2025

Optimizing Credit Risk Prediction for Peer-to-Peer Lending Using Machine Learning

Authors
Souadda, LI; Halitim, AR; Benilles, B; Oliveira, JM; Ramos, P;

Publication

Abstract
This study investigates the effectiveness of different hyperparameter tuning strategies for peer-to-peer risk management. Ensemble learning techniques have shown superior performance in this field compared to individual classifiers and traditional statistical methods. However, model performance is influenced not only by the choice of algorithm but also by hyperparameter tuning, which impacts both predictive accuracy and computational efficiency. This research compares the performance and efficiency of three widely used hyperparameter tuning methods, Grid Search, Random Search, and Optuna, across XGBoost, LightGBM, and Logistic Regression models. The analysis uses the Lending Club dataset, spanning from 2007 Q1 to 2020 Q3, with comprehensive data preprocessing to address missing values, class imbalance, and feature engineering. Model explainability is assessed through feature importance analysis to identify key drivers of default probability. The findings reveal comparable predictive performance among the tuning methods, evaluated using metrics such as G-mean, sensitivity, and specificity. However, Optuna significantly outperforms the others in computational efficiency; for instance, it is 10.7 times faster than Grid Search for XGBoost and 40.5 times faster for LightGBM. Additionally, variations in feature importance rankings across tuning methods influence model interpretability and the prioritization of risk factors. These insights underscore the importance of selecting appropriate hyperparameter tuning strategies to optimize both performance and explainability in peer-to-peer risk management models.

2025

Systematic review of predictive maintenance practices in the manufacturing sector

Authors
Abdeldjalil Benhanifia; Zied Ben Cheikh; Paulo Moura Oliveira; Antonio Valente; José Lima;

Publication
Intelligent Systems with Applications

Abstract

2025

QUAIDE - Quality assessment of AI preclinical studies in diagnostic endoscopy

Authors
Antonelli, G; Libanio, D; De Groof, AJ; van der Sommen, F; Mascagni, P; Sinonquel, P; Abdelrahim, M; Ahmad, O; Berzin, T; Bhandari, P; Bretthauer, M; Coimbra, M; Dekker, E; Ebigbo, A; Eelbode, T; Frazzoni, L; Gross, SA; Ishihara, R; Kaminski, MF; Messmann, H; Mori, Y; Padoy, N; Parasa, S; Pilonis, ND; Renna, F; Repici, A; Simsek, C; Spadaccini, M; Bisschops, R; Bergman, JJGHM; Hassan, C; Ribeiro, MD;

Publication
GUT

Abstract
Artificial intelligence (AI) holds significant potential for enhancing quality of gastrointestinal (GI) endoscopy, but the adoption of AI in clinical practice is hampered by the lack of rigorous standardisation and development methodology ensuring generalisability. The aim of the Quality Assessment of pre-clinical AI studies in Diagnostic Endoscopy (QUAIDE) Explanation and Checklist was to develop recommendations for standardised design and reporting of preclinical AI studies in GI endoscopy. The recommendations were developed based on a formal consensus approach with an international multidisciplinary panel of 32 experts among endoscopists and computer scientists. The Delphi methodology was employed to achieve consensus on statements, with a predetermined threshold of 80% agreement. A maximum three rounds of voting were permitted. Consensus was reached on 18 key recommendations, covering 6 key domains: data acquisition and annotation (6 statements), outcome reporting (3 statements), experimental setup and algorithm architecture (4 statements) and result presentation and interpretation (5 statements). QUAIDE provides recommendations on how to properly design (1. Methods, statements 1-14), present results (2. Results, statements 15-16) and integrate and interpret the obtained results (3. Discussion, statements 17-18). The QUAIDE framework offers practical guidance for authors, readers, editors and reviewers involved in AI preclinical studies in GI endoscopy, aiming at improving design and reporting, thereby promoting research standardisation and accelerating the translation of AI innovations into clinical practice.

2025

From Data to Action

Authors
Dias, JT; Santos, A; Mamede, HS;

Publication
Advances in Computational Intelligence and Robotics - AI and Learning Analytics in Distance Learning

Abstract
This chapter examines how Artificial Intelligence (AI) and Learning Analytics (LA) are transforming distance education, accelerated by the COVID-19 shift to e-learning. By using data from Learning Management Systems (LMS), these technologies can personalize learning, improve student retention, and automate tasks. AI, particularly machine learning, enables dynamic adaptation to student needs, while LA provides valuable insights for informed instructional decisions. However, ethical concerns, including data privacy and algorithmic bias, must be addressed to ensure equitable access and fair learning outcomes. The future of distance learning lies in responsible integration of AI and LA, creating immersive and inclusive educational experiences.

2025

A two-step concept-based approach for enhanced interpretability and trust in skin lesion diagnosis

Authors
Patrício, C; Teixeira, LF; Neves, JC;

Publication
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL

Abstract
The main challenges hindering the adoption of deep learning-based systems in clinical settings are the scarcity of annotated data and the lack of interpretability and trust in these systems. Concept Bottleneck Models (CBMs) offer inherent interpretability by constraining the final disease prediction on a set of human-understandable concepts. However, this inherent interpretability comes at the cost of greater annotation burden. Additionally, adding new concepts requires retraining the entire system. In this work, we introduce a novel two-step methodology that addresses both of these challenges. By simulating the two stages of a CBM, we utilize a pretrained Vision Language Model (VLM) to automatically predict clinical concepts, and an off-the-shelf Large Language Model (LLM) to generate disease diagnoses grounded on the predicted concepts. Furthermore, our approach supports test-time human intervention, enabling corrections to predicted concepts, which improves final diagnoses and enhances transparency in decision-making. We validate our approach on three skin lesion datasets, demonstrating that it outperforms traditional CBMs and state-of-the-art explainable methods, all without requiring any training and utilizing only a few annotated examples. The code is available at https://github.com/CristianoPatricio/2step-concept-based-skin-diagnosis.

2025

AI and Learning Analytics in Distance Learning

Authors
Mamede, HS; Santos, A;

Publication
Advances in Computational Intelligence and Robotics

Abstract

  • 17
  • 4033