2025
Authors
Zolfagharnasab, MH; Freitas, N; Gonçalves, T; Bonci, E; Mavioso, C; Cardoso, MJ; Oliveira, HP; Cardoso, JS;
Publication
ARTIFICIAL INTELLIGENCE AND IMAGING FOR DIAGNOSTIC AND TREATMENT CHALLENGES IN BREAST CARE, DEEP-BREATH 2024
Abstract
Breast cancer treatments often affect patients' body image, making aesthetic outcome predictions vital. This study introduces a Deep Learning (DL) multimodal retrieval pipeline using a dataset of 2,193 instances combining clinical attributes and RGB images of patients' upper torsos. We evaluate four retrieval techniques: Weighted Euclidean Distance (WED) with various configurations and shallow Artificial Neural Network (ANN) for tabular data, pre-trained and fine-tuned Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs), and a multimodal approach combining both data types. The dataset, categorised into Excellent/Good and Fair/Poor outcomes, is organised into over 20K triplets for training and testing. Results show fine-tuned multimodal ViTs notably enhance performance, achieving up to 73.85% accuracy and 80.62% Adjusted Discounted Cumulative Gain (ADCG). This framework not only aids in managing patient expectations by retrieving the most relevant post-surgical images but also promises broad applications in medical image analysis and retrieval. The main contributions of this paper are the development of a multimodal retrieval system for breast cancer patients based on post-surgery aesthetic outcome and the evaluation of different models on a new dataset annotated by clinicians for image retrieval.
2025
Authors
Gonçalves, A; Varajão, J; Moura Oliveira, P; Moura, I;
Publication
Digital Government: Research and Practice
Abstract
2025
Authors
da Silva Cardoso, H; Rocio, V;
Publication
Communications in Computer and Information Science - Technology and Innovation in Learning, Teaching and Education
Abstract
2025
Authors
Freitas, N; Veloso, C; Mavioso, C; Cardoso, MJ; Oliveira, HP; Cardoso, JS;
Publication
ARTIFICIAL INTELLIGENCE AND IMAGING FOR DIAGNOSTIC AND TREATMENT CHALLENGES IN BREAST CARE, DEEP-BREATH 2024
Abstract
Breast cancer is the most common type of cancer in women worldwide. Because of high survival rates, there has been an increased interest in patient Quality of Life after treatment. Aesthetic results play an important role in this aspect, as these treatments can leave a mark on a patient's self-image. Despite that, there are no standard ways of assessing aesthetic outcomes. Commonly used software such as BCCT.core or BAT require the manual annotation of keypoints, which makes them time-consuming for clinical use and can lead to result variability depending on the user. Recently, there have been attempts to leverage both traditional and Deep Learning algorithms to detect keypoints automatically. In this paper, we compare several methods for the detection of Breast Endpoints across two datasets. Furthermore, we present an extended evaluation of using these models as input for full contour prediction and aesthetic evaluation using the BCCT.core software. Overall, the YOLOv9 model, fine-tuned for this task, presents the best results considering both accuracy and usability, making this architecture the best choice for this application. The main contribution of this paper is the development of a pipeline for full breast contour prediction, which reduces clinician workload and user variability for automatic aesthetic assessment.
2025
Authors
P.B. de Moura Oliveira; Damir Vrancic;
Publication
IFAC-PapersOnLine
Abstract
2025
Authors
Oliveira, I; Pereira, A; Amante, L; Rocio, V;
Publication
Revista Docência e Cibercultura
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.