2025
Authors
Reis, AA; Leite, RAS; Walter, CE; Reis, IB; Goncalves, R; Martins, J; Branco, F; Au Yong Oliveira, M;
Publication
EXPERT SYSTEMS
Abstract
The purpose of this study is to ascertain the hierarchical importance of a patent's characteristics to licensing. This research has a causal-exploratory purpose, in that it sought to establish relationships between variables. This research aims to identify which characteristics are influential in the licensing of Brazilian academic patents in the biotechnology and pharmaceutical technology fields, based on the mining of data contained in licensed and unlicensed patent documents. Which characteristics of Brazilian academic patents are most influential in their licensing potential? An analysis through Random Forest was performed. To the best of our knowledge, there are no studies in Brazil using machine learning to identify which characteristics are influential in licensing a particular academic patent, especially given the difficulty of gathering this information. We found that regardless of the measure used, the three most critical licensing characteristics for the Biotechnology and Pharmaceutical patents analysed are Patent Scope, Life Cycle, and Claims. At the same time, the least important is the Patent Cooperation Treaty. The relevance of this research is based on the fact that after identifying which intrinsic characteristics influence the final value and licensing probabilities of a given patent, it will be possible to develop mathematical models that provide accurate information for establishing technology transfer agreements. In practical terms, the results suggest that greater patent versatility, combined with lifecycle management and a technical effort to build strong claims, increases the licensing potential of academic biopharmaceutical patents.
2025
Authors
Lourenço, A; Gama, J; Xing, EP; Marreiros, G;
Publication
CoRR
Abstract
2025
Authors
Kindlovits, R; Sousa, AC; Viana, JL; Milheiro, J; Oliveira, BMPM; Marques, F; Santos, A; Teixeira, VH;
Publication
NUTRIENTS
Abstract
Background/Objectives: Type 2 diabetes mellitus (T2DM) is a chronic condition marked by hyperglycemia, which can affect metabolic, vascular, and hematological parameters. A low-carbohydrate, high-fat (LCHF) diet has been shown to improve glycemic control and blood pressure regulation. Exercise in hypoxia (EH) enhances insulin sensitivity, erythropoiesis, and angiogenesis. The combination of LCHF and EH may offer a promising strategy for managing T2DM and hypertension (HTN), although evidence remains limited. This study aimed to assess the effects of an eight-week normobaric EH intervention at 3000 m simulated altitude combined with an LCHF diet on hematological and lipid profiles, inflammation, and blood pressure in older patients with T2DM and HTN. Methods: Forty-two diabetic patients with HTN were randomly assigned to three groups: (1) control group (control diet + exercise in normoxia), (2) EH group (control diet + EH), and (3) intervention group (EH+LCHF) Baseline and eight-week measurements included systolic, diastolic, and mean blood pressure (SBP, DBP, MAP), hematological and lipid profiles, and inflammation biomarkers. Results: Blood pressure decreased after the intervention (p < 0.001), with no significant differences between groups (SBP: p = 0.151; DBP: p = 0.124; MAP: p = 0.18). No differences were observed in lipid profile or C-reactive protein levels (p > 0.05). Mean corpuscular hemoglobin (MCH) increased in the EH group (p = 0.027), while it decreased in the EH+LCHF group (p = 0.046). Conclusions: Adding hypoxia or restricting carbohydrates did not provide additional benefits on blood pressure in T2DM patients with HTN. Further elucidation of the mechanisms underlying hematological adaptations is imperative.
2025
Authors
Lourenço, A; Rodrigo, J; Gama, J; Marreiros, G;
Publication
CoRR
Abstract
2025
Authors
Silva, F; Oliveira, HP; Pereira, T;
Publication
ACM COMPUTING SURVEYS
Abstract
The large gap between the generalization level of state-of-the-art machine learning and human learning systems calls for the development of artificial intelligence (AI) models that are truly inspired by human cognition. In tasks related to image analysis, searching for pixel-level regularities has reached a power of information extraction still far from what humans capture with image-based observations. This leads to poor generalization when even small shifts occur at the level of the observations. We explore a perspective on this problem that is directed to learning the generative process with causality-related foundations, using models capable of combining symbolic manipulation, probabilistic reasoning, and pattern recognition abilities. We briefly review and explore connections of research from machine learning, cognitive science, and related fields of human behavior to support our perspective for the direction to more robust and human-like artificial learning systems.
2025
Authors
Matos, T; Rocha, JL; Martins, MS; Gonçalves, LM;
Publication
Journal of Marine Science and Engineering
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.