Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2024

Remote sensing of vegetation and soil moisture content in Atlantic humid mountains with Sentinel-1 and 2 satellite sensor data

Authors
Monteiro, T; Arenas Castro, S; Punalekar, M; Cunha, M; Mendes, I; Giamberini, M; Marques da Costa, E; Fava, F; Lucas, R;

Publication
Ecological Indicators

Abstract
The satellite monitoring of vegetation moisture content (VMC) and soil moisture content (SMC) in Southern European Atlantic mountains remains poorly understood but is a fundamental tool to better manage landscape moisture dynamics under climate change. In the Atlantic humid mountains of Portugal, we investigated an empirical model incorporating satellite (Sentinel-1 radar, S1; Sentinel-2 optical, S2) and ancillary predictors (topography and vegetation cover type) to monitor VMC (%) and SMC (%). Predictors derived from the S1 (VV, HH and VV/HH) and S2 (NDVI and NDMI) are compared to field measurements of VMC (n = 48) and SMC (n = 48) obtained during the early, mid and end of summer. Linear regression modelling was applied to uncover the feasibility of a landscape model for VMC and SMC, the role of vegetation type models (i.e. native forest, grasslands and shrubland) to enhance predictive capacity and the seasonal variation in the relationships between satellite predictors and VMC and SMC. Results revealed a significant but weak relationship between VMC and predictors at landscape level (R2 = 0.30, RMSEcv = 69.9 %) with S2_NDMI and vegetation cover type being the only significant predictors. The relationship improves in vegetation type models for grasslands (R2 = 0.35, RMSEcv = 95.0 % with S2_NDVI) and shrublands conditions (R2 = 0.52, RMSEcv = 45.3 %). A model incorporating S2_NDVI and S1_VV explained 52 % of the variation in VMC in shrublands. The relationship between SMC and satellite predictors at the landscape level was also weak, with only the S2_NDMI and vegetation cover type exhibiting a significant relationship (R2 = 0.28, RMSEcv = 18.9 %). Vegetation type models found significant associations with SMC only in shrublands (R2 = 0.31, RMSEcv = 9.03 %) based on the S2_NDMI and S1_VV/VH ratio. The seasonal analysis revealed however that predictors associated to VMC and SMC may vary over the summer. The relationships with VMC were stronger in the early summer (R2 = 0.31, RMSEcv = 90.1 %; based on S2_NDMI) and mid (R2 = 0.37, RMSEcv = 70.8 %; based on S2_NDVI), butnon-significant in the end of summer. Similar pattern was found for SMC, where the link with predictors decreases from the early summer (R2 = 0.33, RMSEcv = 16.0 %; based on S1_VH) and mid summer (R2 = 0.30, RMSEcv = 17.8 %; based on S2_NDMI) to the end of summer (non-significant). Overall, the hypothesis of a universal landscape model for VMC and SMC was not fully supported. Vegetation type models showed promise, particularly for VMC in shrubland conditions. Sentinel optical and radar data were the most significant predictors in all models, despite the inclusion of ancillary predictors. S2_NDVI, S2_NDMI, S1_VV and S1_VV/VH ratio were the most relevant predictors for VMC and, to a lesser extent, SMC. Future research should quantify misregistration effects using plot vs. moving window values for the satellite predictors, consider meteorological control factors, and enhance sampling to overcome a main limitation of our study, small sample size. © 2024

2024

Advancing the understanding of pupil size variation in occupational safety and health: A systematic review and evaluation of open-source methodologies

Authors
Ferreira, F; Ferreira, S; Mateus, C; Barbosa-Rocha, N; Coelho, L; Rodrigues, MA;

Publication
SAFETY SCIENCE

Abstract
Pupil size can be used as an important biomarker for occupational risks. In recent years, there has been an increase in the development of open-source tools dedicated to obtaining and measuring pupil diameter. However, it remains undetermined determined whether these tools are suitable for use in occupational settings. This study explores the significance of pupil size variation as a biomarker for occupational risks and evaluates existing opensource methods for potential use in both research and occupational settings, with the goal of to prevent occupational accidents and improve the health and performance of workers. To this end, a two-phase systematic literature review was conducted in the Web of Science TM, ScienceDirect (R), and Scopus (R) databases. For the relevance of monitoring pupil size variation in occupational settings, 15 articles were included. The articles were divided into three groups: mental workload, occupational stress, and mental fatigue. In most cases, pupil dilation increased with workload enhancement and with higher levels of stress. Regarding fatigue, it was noted that an increase in this condition corresponded with a decrease in pupil size. With respect to the open-source methodologies, 16 articles were identified, which were categorized into two groups: algorithms and software. Convolutional neural networks (CNN) 1 have exhibited superior performance among the various algorithmic approaches studied. Building on this insight, and considering the evaluations of software options, MEYE emerges as the premier open-source system for deployment in occupational settings due to its compatibility with a standard computer webcam. This feature positions MEYE as a particularly practical tool for workers in stable environments, like those of developers and administrators.

2024

Contextual Rule-Based System for Brightness Energy Management in Buildings

Authors
Ferreira, V; Pinto, T; Baptista, J;

Publication
ELECTRONICS

Abstract
The increase in renewable generation of a distributed nature has brought significant new challenges to power and energy system management and operation. Self-consumption in buildings is widespread, and with it rises the need for novel, adaptive and intelligent building energy management systems. Although there is already extensive research and development work regarding building energy management solutions, the capabilities for adaptation and contextualization of decisions are still limited. Consequently, this paper proposes a novel contextual rule-based system for energy management in buildings, which incorporates a contextual dimension that enables the adaptability of the system according to diverse contextual situations and the presence of multiple users with different preferences. Results of a case study based on real data show that the contextualization of the energy management process can maintain energy costs as low as possible, while respecting user preferences and guaranteeing their comfort.

2024

A Gamification-Based Tool to Promote Accessible Design

Authors
Lorgat, MG; Paredes, H; Rocha, T;

Publication
Lecture Notes in Networks and Systems

Abstract
The human population with disability is rapidly expanding, more than 15% of people worldwide suffer from a disability and, despite the availability of accessibility guidelines, the websites are still inaccessible. Moreover, professionals with knowledge of accessibility and design abilities are hard to come by. Therefore, the current paper addresses the introduction of accessibility to the Software Engineering students through AccessCademy, a gamification-based tool, in a fun way. The activity is delivered via a Web-based learning environment, that presents bad accessibility scenarios or failures based on the Web Content Accessibility Guidelines (WCAG), and then encourages the students to solve them. Furthermore, a case study will be presented that evaluated the learning effectiveness of the tool in the context of a university course. The results demonstrated the potential of AccessCademy which offers students a fun and engaging way to learn about accessibility, to understand the importance of accessible design with WCAG and gain accessible design skills as well. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024.

2024

Depth Control of an Underwater Sensor Platform: Comparison between Variable Buoyancy and Propeller Actuated Devices

Authors
Carneiro, JF; Pinto, JB; de Almeida, FG; Cruz, NA;

Publication
SENSORS

Abstract
Underwater long-endurance platforms are crucial for continuous oceanic observation, allowing for sustained data collection from a multitude of sensors deployed across diverse underwater environments. They extend mission durations, reduce maintenance needs, and significantly improve the efficiency and cost-effectiveness of oceanographic research endeavors. This paper investigates the closed-loop depth control of actuation systems employed in underwater vehicles, focusing on the energy consumption of two different mechanisms: variable buoyancy and propeller actuated devices. Using a prototype previously developed by the authors, this paper presents a detailed model of the vehicle using both actuation solutions. The proposed model, although being a linear-based one, accounts for several nonlinearities that are present such as saturations, sensor quantization, and the actuator brake model. Also, it allows a simple estimation of the energy consumption of both actuation solutions. Based on the developed models, this study then explores the intricate interplay between energy consumption and control accuracy. To this end, several PID-based controllers are developed and tested in simulation. These controllers are used to evaluate the dynamic response and power requirements of variable buoyancy systems and propeller actuated devices under various operational conditions. Our findings contribute to the optimization of closed-loop depth control strategies, offering insights into the trade-offs between energy efficiency and system effectiveness in diverse underwater applications.

2024

Plantar pressure thresholds as a strategy to prevent diabetic foot ulcers: A systematic review

Authors
Castro-Martins, P; Marques, A; Coelho, L; Vaz, M; Costa, JT;

Publication
HELIYON

Abstract
Background: The development of ulcers in the plantar region of the diabetic foot originates mainly from sites subjected to high pressure. The monitoring of these events using maximum allowable pressure thresholds is a fundamental procedure in the prevention of ulceration and its recurrence. Objective: The aim of this review was to identify data in the literature that reveal an objective threshold of plantar pressure in the diabetic foot, where pressure is classified as promoting ulceration. The aim is not to determine the best and only pressure threshold for ulceration, but rather to clarify the threshold values most used in clinical practice and research, also considering the devices used and possible applications for offloading plantar pressure. Design: A systematic review. Methods: The search was performed in three electronic databases, by the PRISMA methodology, for studies that used a pressure threshold to minimize the risk of ulceration in the diabetic foot. The selected studies were subjected to eligibility criteria. Results: Twenty-six studies were included in this review. Seven thresholds were identified, five of which are intended for the inside of the shoe: a threshold of average peak pressure of 200 kPa; 25 % and 40-80 % reduction from initial baseline pressure; 32-35 mm Hg for a capillary perfusion pressure; and a matrix of thresholds based on patient risk, shoe size and foot region. Two other thresholds are intended for the barefoot, 450 and 750 kPa. The threshold of 200 kPa of pressure inside the shoe is the most agreed upon among the studies. Regarding the prevention of ulceration and its recurrence, the efficacy of the proposed threshold matrix and the threshold of reducing baseline pressure by 40-80 % has not yet been evaluated, and the evidence for the remaining thresholds still needs further studies. Conclusions: Some heterogeneity was found in the studies, especially regarding the measurement systems used, the number of regions of interest and the number of steps to be considered for the threshold. Even so, this review reveals the way forward to obtain a threshold indicative of an effective steppingstone in the prevention of diabetic foot ulcer.

  • 23
  • 3789