2025
Authors
José Ricardo Barboza; Gilberto Bernardes; Eduardo Magalhães;
Publication
2025 Immersive and 3D Audio: from Architecture to Automotive (I3DA)
Abstract
2025
Authors
Nogueira, DM; Gomes, EF;
Publication
Proceedings of the 18th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2025 - Volume 1, Porto, Portugal, February 20-22, 2025.
Abstract
2025
Authors
Nikolaidis, N; Stefanovitch, N; Silvano, P; Dimitrov, DI; Yangarber, R; Guimarães, N; Sartori, E; Androutsopoulos, I; Nakov, P; San Martino, GD; Piskorski, J;
Publication
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2025, Vienna, Austria, July 27 - August 1, 2025
Abstract
2025
Authors
Gea, Daniel; Bernardes, Gilberto;
Publication
Abstract
Building on theories of human sound perception and spatial cognition, this paper introduces a sonification method that facilitates navigation by auditory cues. These cues help users recognize objects and key urban architectural elements, encoding their semantic and spatial properties using non-speech audio signals. The study reviews advances in object detection and sonification methodologies, proposing a novel approach that maps semantic properties (i.e., material, width, interaction level) to timbre, pitch, and gain modulation and spatial properties (i.e., distance, position, elevation) to gain, panning, and melodic sequences. We adopt a three-phase methodology to validate our method. First, we selected sounds to represent the object’s materials based on the acoustic properties of crowdsourced annotated samples. Second, we conducted an online perceptual experiment to evaluate intuitive mappings between sounds and object semantic attributes. Finally, in-person navigation experiments were conducted in virtual reality to assess semantic and spatial recognition. The results demonstrate a notable perceptual differentiation between materials, with a global accuracy of .69 ± .13 and a mean navigation accuracy of .73 ± .16, highlighting the method’s effectiveness. Furthermore, the results suggest a need for improved associations between sounds and objects and reveal demographic factors that are influential in the perception of sounds.
2025
Authors
Brito C.; Pina N.; Esteves T.; Vitorino R.; Cunha I.; Paulo J.;
Publication
Transportation Engineering
Abstract
Cities worldwide have agreed on ambitious goals regarding carbon neutrality. To do so, policymakers seek ways to foster smarter and cleaner transportation solutions. However, citizens lack awareness of their carbon footprint and of greener mobility alternatives such as public transports. With this, three main challenges emerge: (i) increase users’ awareness regarding their carbon footprint, (ii) provide personalized recommendations and incentives for using sustainable transportation alternatives and, (iii) guarantee that any personal data collected from the user is kept private. This paper addresses these challenges by proposing a new methodology. Created under the FranchetAI project, the methodology combines federated Artificial Intelligence (AI) and Greenhouse Gas (GHG) estimation models to calculate the carbon footprint of users when choosing different transportation modes (e.g., foot, car, bus). Through a mobile application that keeps the privacy of users’ personal information, the project aims at providing detailed reports to inform citizens about their impact on the environment, and an incentive program to promote the usage of more sustainable mobility alternatives.
2025
Authors
Strecht, P; Mendes-Moreira, J; Soares, C;
Publication
MACHINE LEARNING, OPTIMIZATION, AND DATA SCIENCE, LOD 2024, PT I
Abstract
In many organizations with a distributed operation, not only is data collection distributed, but models are also developed and deployed separately. Understanding the combined knowledge of all the local models may be important and challenging, especially in the case of a large number of models. The automated development of consensus models, which aggregate multiple models into a single one, involves several challenges, including fidelity (ensuring that aggregation does not penalize the predictive performance severely) and completeness (ensuring that the consensus model covers the same space as the local models). In this paper, we address the latter, proposing two measures for geometrical and distributional completeness. The first quantifies the proportion of the decision space that is covered by a model, while the second takes into account the concentration of the data that is covered by the model. The use of these measures is illustrated in a real-world example of academic management, as well as four publicly available datasets. The results indicate that distributional completeness in the deployed models is consistently higher than geometrical completeness. Although consensus models tend to be geometrically incomplete, distributional completeness reveals that they cover the regions of the decision space with a higher concentration of data.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.