Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2024

The Synergy between Artificial Intelligence, Remote Sensing, and Archaeological Fieldwork Validation

Authors
Canedo, D; Hipólito, J; Fonte, J; Dias, R; do Pereiro, T; Georgieva, P; Gonçalves-Seco, L; Vázquez, M; Pires, N; Fábrega-Alvarez, P; Menéndez-Marsh, F; Neves, AJR;

Publication
REMOTE SENSING

Abstract
The increasing relevance of remote sensing and artificial intelligence (AI) for archaeological research and cultural heritage management is undeniable. However, there is a critical gap in this field. Many studies conclude with identifying hundreds or even thousands of potential sites, but very few follow through with crucial fieldwork validation to confirm their existence. This research addresses this gap by proposing and implementing a fieldwork validation pipeline. In northern Portugal's Alto Minho region, we employed this pipeline to verify 237 potential burial mounds identified by an AI-powered algorithm. Fieldwork provided valuable information on the optimal conditions for burial mounds and the specific factors that led the algorithm to err. Based on these insights, we implemented two key improvements to the algorithm. First, we incorporated a slope map derived from LiDAR-generated terrain models to eliminate potential burial mound inferences in areas with high slopes. Second, we trained a Vision Transformer model using digital orthophotos of both confirmed burial mounds and previously identified False Positives. This further refines the algorithm's ability to distinguish genuine sites. The improved algorithm was then tested in two areas: the original Alto Minho validation region and the Barbanza region in Spain, where the location of burial mounds was well established through prior field work.

2024

Optimized reconstruction of the absorption spectra of kidney tissues from the spectra of tissue components using the least squares method

Authors
Pinheiro, MR; Fernandes, LE; Carneiro, IC; Carvalho, SD; Henrique, RM; Tuchin, VV; Oliveira, HP; Oliveira, LM;

Publication
JOURNAL OF BIOPHOTONICS

Abstract
With the objective of developing new methods to acquire diagnostic information, the reconstruction of the broadband absorption coefficient spectra (mu a[lambda]) of healthy and chromophobe renal cell carcinoma kidney tissues was performed. By performing a weighted sum of the absorption spectra of proteins, DNA, oxygenated, and deoxygenated hemoglobin, lipids, water, melanin, and lipofuscin, it was possible to obtain a good match of the experimental mu a(lambda) of both kidney conditions. The weights used in those reconstructions were estimated using the least squares method, and assuming a total water content of 77% in both kidney tissues, it was possible to calculate the concentrations of the other tissue components. It has been shown that with the development of cancer, the concentrations of proteins, DNA, oxygenated hemoglobin, lipids, and lipofuscin increase, and the concentration of melanin decreases. Future studies based on minimally invasive spectral measurements will allow cancer diagnosis using the proposed approach.

2024

Emotional Evaluation of Open-Ended Responses with Transformer Models

Authors
Sanmartín, AP; Arriba Pérez, Fd; Méndez, SG; Burguillo, JC; Leal, F; Malheiro, B;

Publication
Good Practices and New Perspectives in Information Systems and Technologies - WorldCIST 2024, Volume 1, Lodz, Poland, 26-28 March 2024.

Abstract
This work applies Natural Language Processing (NLP) techniques, specifically transformer models, for the emotional evaluation of open-ended responses. Today’s powerful advances in transformer architecture, such as ChatGPT, make it possible to capture complex emotional patterns in language. The proposed transformer-based system identifies the emotional features of various texts. The research employs an innovative approach, using prompt engineering and existing context, to enhance the emotional expressiveness of the model. It also investigates spaCy’s capabilities for linguistic analysis and the synergy between transformer models and this technology. The results show a significant improvement in emotional detection compared to traditional methods and tools, highlighting the potential of transformer models in this domain. The method can be implemented in various areas, such as emotional research or mental health monitoring, creating a much richer and complete user profile. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.

2024

Sustainable Irrigation Systems in Vineyards: A Literature Review on the Contribution of Renewable Energy Generation and Intelligent Resource Management Models

Authors
Branquinho, R; Briga-Sá, A; Ramos, S; Serôdio, C; Pinto, T;

Publication
ELECTRONICS

Abstract
Agriculture being an essential activity sector for the survival and prosperity of humanity, it is fundamental to use sustainable technologies in this field. With this in mind, some statistical data are analyzed regarding the food price rise and sustainable development indicators, with a special focus on the Portugal region. It is determined that one of the main factors that influences agriculture's success is the soil's characteristics, namely in terms of moisture and nutrients. In this regard, irrigation processes have become indispensable, and their technological management brings countless economic advantages. Like other branches of agriculture, the wine sector needs an adequate concentration of nutrients and moisture in the soil to provide the most efficient results, considering the appropriate and intelligent use of available water and energy resources. Given these facts, the use of renewable energies is a very important aspect of this study, which also synthesizes the main irrigation methods and examines the importance of evaluating the evapotranspiration of crops. Furthermore, the control of irrigation processes and the implementation of optimization and resource management models are of utmost importance to allow maximum efficiency and sustainability in this field.

2024

Educational Practices and Strategies With Immersive Learning Environments: Mapping of Reviews for Using the Metaverse

Authors
Beck, D; Morgado, L; O'Shea, P;

Publication
IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES

Abstract
The educational metaverse promises fulfilling ambitions of immersive learning, leveraging technology-based presence alongside narrative and/or challenge-based deep mental absorption. Most reviews of immersive learning research were outcomes-focused, few considered the educational practices and strategies. These are necessary to provide theoretical and pedagogical frameworks to situate outcomes within a context where technology is in concert with educational approaches. We sought a broader perspective of the practices and strategies used in immersive learning environments, and conducted a mapping survey of reviews, identifying 47 studies. Extracted accounts of educational practices and strategies under thematic analysis yielded 45 strategies and 21 practices, visualized as a network clustered by conceptual proximity. Resulting clusters Active context, Collaboration, Engagement and Scaffolding, Presence, and Real and virtual multimedia learning expose the richness of practices and strategies within the field. The visualization maps the field, supporting decision-making when combining practices and strategies for using the metaverse in education, highlights which practices and strategies are supported by the literature, and the presence and absence of diversity within clusters.

2024

Topic Extraction: BERTopic's Insight into the 117th Congress's Twitterverse

Authors
Mendonça, M; Figueira, A;

Publication
INFORMATICS-BASEL

Abstract
As social media (SM) becomes increasingly prevalent, its impact on society is expected to grow accordingly. While SM has brought positive transformations, it has also amplified pre-existing issues such as misinformation, echo chambers, manipulation, and propaganda. A thorough comprehension of this impact, aided by state-of-the-art analytical tools and by an awareness of societal biases and complexities, enables us to anticipate and mitigate the potential negative effects. One such tool is BERTopic, a novel deep-learning algorithm developed for Topic Mining, which has been shown to offer significant advantages over traditional methods like Latent Dirichlet Allocation (LDA), particularly in terms of its high modularity, which allows for extensive personalization at each stage of the topic modeling process. In this study, we hypothesize that BERTopic, when optimized for Twitter data, can provide a more coherent and stable topic modeling. We began by conducting a review of the literature on topic-mining approaches for short-text data. Using this knowledge, we explored the potential for optimizing BERTopic and analyzed its effectiveness. Our focus was on Twitter data spanning the two years of the 117th US Congress. We evaluated BERTopic's performance using coherence, perplexity, diversity, and stability scores, finding significant improvements over traditional methods and the default parameters for this tool. We discovered that improvements are possible in BERTopic's coherence and stability. We also identified the major topics of this Congress, which include abortion, student debt, and Judge Ketanji Brown Jackson. Additionally, we describe a simple application we developed for a better visualization of Congress topics.

  • 25
  • 3789