Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2024

Deep Learning Approaches for Socially Contextualized Acoustic Event Detection in Social Media Posts

Authors
Hajihashemi, V; Gharahbagh, AA; Ferreira, MC; Machado, JJM; Tavares, JMRS;

Publication
GOOD PRACTICES AND NEW PERSPECTIVES IN INFORMATION SYSTEMS AND TECHNOLOGIES, VOL 6, WORLDCIST 2024

Abstract
In recent years, social media platforms have become an essential source of information. Therefore, with their increasing popularity, there is a growing need for effective methods for detecting and analyzing their content in real time. Deep learning is a machine learning technique that teaches computers to understand complex patterns. Deep learning techniques are promising for analyzing acoustic signals from social media posts. In this article, a novel deep learning approach is proposed for socially contextualized event detection based on acoustic signals. The approach integrates the power of deep learning and meaningful features such as Mel frequency cepstral coefficients. To evaluate the effectiveness of the proposed method, it was applied to a real dataset collected from social protests in Iran. The results show that the proposed system can find a protester's clip with an accuracy of approximately 82.57%. Thus, the proposed approach has the potential to significantly improve the accuracy of systems for filtering social media posts.

2024

Cattle Monitoring Blimp – An EPS@ISEP 2023 Project

Authors
Blommestijn, K; Dallongeville, K; Paulsen, M; Mamos, M; Gupta, S; Duarte, J; Malheiro, B; Ribeiro, C; Justo, J; Silva, F; Ferreira, P; Guedes, P;

Publication
Lecture Notes in Educational Technology

Abstract
This paper describes the project based learning experience of a multidisciplinary and multicultural team of students enrolled in the spring of 2023 on the European Project Semester at the Instituto Superior de Engenharia do Porto (EPS@ISEP). Animo is an original blimp based concept that aims to help farmers better manage their livestock. Its development was motivated by the difficulty to effectively monitor cattle herds over vast areas, especially in remote locations where locating animals is challenging. This environmentally friendly solution offers real-time livestock monitoring without thermal engines. Real-time monitoring is achieved through the blimp’s extensive animal data collection. Farmers may discover and handle quickly herd welfare issues by accessing information via a user-friendly App. With an emphasis on accessibility and environmental sustainability, Animo seeks to increase agricultural productivity and profitability. The user controls the blimp motion through the app to obtain a comprehensive farm view. Targeting Australia’s large cattle stations, it aims to enhance productivity while minimising the environmental impact. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024.

2024

Automation of optical tweezers: an enabler for single cell analysis and diagnostic

Authors
Jorge, P; Teixeira, J; Rocha, V; Ribeiro, J; Silva, N;

Publication
BIOPHOTONICS IN POINT-OF-CARE III

Abstract
Sensing at the single cell level can provide insights into its dynamics and heterogeneity, yielding information otherwise unattainable with traditional biological methods where average population behavior is observed. In this context, optical tweezers provide the ability to select, separate, manipulate and identify single cells or other types of microparticles, potentially enabling single cell diagnostics. Forward or backscatter analysis of the light interacting with the trapped cells can provide valuable insights on the cell optical, geometrical and mechanical properties. In particular, the combination of tweezers systems with advanced machine learning algorithms can enable single cell identification capabilities. However, typical processing pipelines require a training stage which often struggles when trying to generalize to new sets of data. In this context, fully automated tweezers system can provide mechanisms to obtain much larger datasets with minimum effort form the users, while eliminating procedural variability. In this work, a pipeline for full automation of optical tweezers systems is discussed. A performance comparison between manually operated and fully automated tweezers systems is presented, clearly showing advantages of the latter. A case study demonstrating the ability of the system to discriminate molecular binding events on microparticles is presented.

2024

Estimating Alighting Stops and Transfers from AFC Data: The Case Study of Porto

Authors
Hora, J; Marta, CFB; Camanho, A; Galvao, T;

Publication
INFORMATION SYSTEMS AND TECHNOLOGIES, VOL 4, WORLDCIST 2023

Abstract
This study estimates alighting stops and transfers from entry-only Automatic Fare Collection (AFC) data. The methodology adopted includes two main steps: an implementation of the Trip Chaining Method (TCM) to estimate the alighting stops from AFC records and the subsequent application of criteria for the identification of transfers. For each pair of consecutive AFC records on the same smart card, a transfer is identified considering a threshold for the walking distance, a threshold for the time required to perform an activity, and the validation of different boarding routes. This methodology was applied to the case study of Porto, Portugal, considering all trips performed by a set of 19999 smart cards over one year. The results of this methodology allied with visualization techniques allowed to study Origin-Destination (OD) patterns by type of day, seasonally, and by user frequency, each analyzed at the stop level and at the geographic area level.

2024

A Comprehensive Examination of User Experience in AI-Based Symptom Checker Chatbots

Authors
Ferreira, MC; Veloso, M; Tavares, JMRS;

Publication
DECISION SUPPORT SYSTEMS XIV: HUMAN-CENTRIC GROUP DECISION, NEGOTIATION AND DECISION SUPPORT SYSTEMS FOR SOCIETAL TRANSITIONS, ICDSST 2024

Abstract
Recent advancements in digital technology have significantly impacted healthcare, with the rise of chatbots as a promising avenue for healthcare services. These chatbots aim to provide prevention, diagnosis, and treatment services, thereby reducing the workload on medical professionals. Despite this trend, limited research has explored the variables influencing user experiences in the design of healthcare chatbots. While the impact of visual representation within chatbot systems is recognized, existing studies have primarily focused on efficiency and accuracy, neglecting graphical interfaces and non-verbal visual communication tools. This research aims to delve into user experience aspects of symptom checker chatbots, including identity design, interface layout, and visual communication mechanisms. Data was collected through a comprehensive questionnaire involving three distinct chatbots (Healthily, Mediktor and Adele - a self-developed solution) and underwent meticulous analysis, yielding valuable insights to aid the decision process when designing effective chatbots for symptom checking.

2024

Smart Supermarket Cart – An EPS@ISEP 2023 Project

Authors
Orós, M; Robu, M; van Klaveren, H; Gajda, D; Van Dyck, J; Krings, T; Duarte, J; Malheiro, B; Ribeiro, C; Justo, J; Silva, F; Ferreira, P; Guedes, P;

Publication
Lecture Notes in Educational Technology

Abstract
The technological revolution experienced over the last two decades, together with changes in shopping behaviour, has led supermarkets to consider smart shopping trolleys. Recently, several companies have tested and implemented smart services and devices, such as smart shopping carts with scanners, automatic payment methods, or self-payment locations, to maximise supermarket profits by reducing staff and improving the customer experience. In the spring of 2023, a team of six students enrolled in the European Project Semester at Instituto Superior de Engenharia do Porto (ISEP) proposed FESmarket, an innovative smart shopping cart solution. The user-centred design focused on making the shopping interaction and experience more efficient, comfortable, and satisfactory. Form (balancing aesthetics with innovation), function (selecting functionalities based on the most disruptive technologies), market (fulfilling the identified needs), sustainability (minimising the use of resources), and ethics (respecting human values) are the pillars of the project. FESmarket proposes a smart shopping trolley equipped a built-in touch screen for real-time information on products and their location, cameras for product identification, an audio assistance system, a refrigeration chamber, and a mobile app interface for the customer. Finally, a proof-of-concept prototype was assembled and tested to validate the viability of the designed solution. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024.

  • 35
  • 3875