2025
Authors
Pourvahab, M; Mousavirad, SJ; Lashgari, F; Monteiro, A; Shafafi, K; Felizardo, V; Pais, S;
Publication
Studies in Computational Intelligence
Abstract
In the study, a new method for analyzing Electrocardiogram (ECG) signals is suggested, which is vital for detecting and treating heart diseases. The technique focuses on improving ECG signal classification, particularly in identifying different heart conditions like arrhythmias and myocardial infarctions. An enhanced version of the differential evolution (DE) algorithm integrated with neural networks is leveraged to classify these signals effectively. The process starts with preprocessing and extracting key features from ECG signals. These features are then processed by a multi-layer perceptron (MLP), a common neural network for ECG analysis. However, traditional MLP training methods have limitations, such as getting trapped in suboptimal solutions. To overcome this, an advanced DE algorithm is used, incorporating a partition-based strategy, opposition-based learning, and local search mechanisms. This improved DE algorithm optimizes the MLP by fine-tuning its weights and biases, using them as starting points for further refinement by the Gradient Descent with Momentum (GDM) local search algorithm. Extensive experiments demonstrate that this novel training approach yields better results than the traditional method. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
2025
Authors
Mota, A; Ávila, P; Bastos, J; Roque, AC; Pires, A;
Publication
Procedia Computer Science
Abstract
This paper compares the performance of Simulated Annealing and Tabu Search meta-heuristics in addressing a parallel machine scheduling problem aimed at minimizing weighted earliness, tardiness, total flowtime, and machine deterioration costs-a multi-objective optimization problem. The problem is transformed into a single-objective problem using weighting and weighting relative distance methods. Four scenarios, varying in the number of jobs and machines, are created to evaluate these metaheuristics. Computational experiments indicate that Simulated Annealing consistently yields superior solutions compared to Tabu Search in scenarios with lower dimensions despite longer run times. Conversely, Tabu Search performs better in higher-dimensional scenarios. Furthermore, it is observed that solutions generated by different weighting methods exhibit similar performance. © 2025 The Author(s).
2025
Authors
Pinheiro, AP; Ribeiro, RP;
Publication
CoRR
Abstract
2025
Authors
Arianna Teixeira Pereira; Janielle Da Silva Lago; Yvelyne Bianca Iunes Santos; Bruno Miguel Delindro Veloso; Norma Ely Santos Beltrão;
Publication
Revista de Gestão Social e Ambiental
Abstract
2025
Authors
Liguori, A; Caroprese, L; Minici, M; Veloso, B; Spinnato, F; Nanni, M; Manco, G; Gama, J;
Publication
NEUROCOMPUTING
Abstract
In real-world scenarios, numerous phenomena generate a series of events that occur in continuous time. Point processes provide a natural mathematical framework for modeling these event sequences. In this comprehensive survey, we aim to explore probabilistic models that capture the dynamics of event sequences through temporal processes. We revise the notion of event modeling and provide the mathematical foundations that underpin the existing literature on this topic. To structure our survey effectively, we introduce an ontology that categorizes the existing approaches considering three horizontal axes: modeling, inference and estimation, and application. We conduct a systematic review of the existing approaches, with a particular focus on those leveraging deep learning techniques. Finally, we delve into the practical applications where these proposed techniques can be harnessed to address real-world problems related to event modeling. Additionally, we provide a selection of benchmark datasets that can be employed to validate the approaches for point processes.
2025
Authors
Esmaeel Nezhad, A; Tavakkoli Sabour, T; Javadi, MS; H j Nardelli, P; Jowkar, S; Ghanavati, F;
Publication
Towards Future Smart Power Systems with High Penetration of Renewables
Abstract
This chapter proposes a day-ahead scheduling framework in an energy hub (EH), integrating different energy conversion and storage technologies to efficaciously fulfill various types of load demands. The mentioned EH is capable of synchronously managing electrical, cooling, and heat load demands. The system is equipped with a combined heat and power (CHP) generating unit that efficiently supplies both heat and electricity. Furthermore, there are an electric heat pump and a boiler that also supply the heating load, while the heater is specifically employed for direct heating usage. The system includes an absorption chiller to supply a cooling load. This chiller absorbs waste heat from the CHP unit, resulting in improved energy efficiency. Battery storage systems enable the efficient use of energy by storing surplus power during times of low demand for future consumption. In addition, solar photovoltaic panels are included to capture renewable energy, therefore decreasing reliance on traditional energy sources and mitigating environmental consequences. The EH also includes a saltwater desalination technology operating together with the energy network to ensure the supply of freshwater, which is especially vital in dry areas. The desalination process is fueled by both renewable and produced thermal energy, thus maximizing resource use and reducing operating costs. The presented scheduling model has been formulated within a mixed-integer linear programming framework, implemented in GAMS, and solved by using the CPLEX solver to ensure optimal operation and minimum computational burden. This chapter provides a broad guideline of how the integrated systems operate. © 2025 Elsevier B.V., All rights reserved.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.