2025
Authors
Nezhad, AE; Nardelli, PHJ; Javadi, MS; Jowkar, S; Sabour, TT; Ghanavati, F;
Publication
ELECTRIC POWER SYSTEMS RESEARCH
Abstract
This paper presents a fast and accurate optimization technique for optimal power flow (OPF) that can be conveniently applied to transmission and distribution systems. The method is based on the branch flow and DC optimal power flow (DCOPF) models. As the branch flow model is independent of the bus voltage angle, the model needs further development to enable use in meshed transmission systems. Thus, this paper adds the bus voltage angle constraint as a key constraint to the branch flow model so that the voltage angle can also be used in the power flow model in addition to the voltage magnitude control. The problem is based on second-order programming and modeled as a quadratically-constrained programming (QCP) problem solved using the CPLEX solver in GAMS. The functionality of the proposed model is tested utilizing four standard distribution systems, three transmission systems, a combined transmission-distribution network. The studied distribution systems include the 33-bus, 69-bus, 118-bus distribution (118-D) test systems, and 730-bus distribution system (730-D). Additionally, the studied transmission systems include 9-bus, 30-bus, and 118-bus transmission (118-T) test systems. The combined transmission-distribution system included the 9-bus transmission system with three connected distribution systems. The simulation results obtained from the developed technique are compared to those obtained from a conventional optimal flow model. The power losses and the absolute error of the solution are used as the two metrics to compare the methods' performance for distribution networks. The absolute error of the solution derived from the proposed hybrid OPF compared to MATPOWER for the 33-bus system is 0.00198 %. For the 69-bus system, the error is 0.00044 %. In addition, for the 118-D and 730-D systems, the absolute errors are 0.0026 %, and 0.05 %, respectively. For the transmission network, the operating costs and the solution absolute error are the two metrics used for comparing the proposed hybrid OPF model and MATPOWER. The results indicate the superior performance of the hybrid OPF model to the Newton-Raphson method in MATPOWER in terms of operating cost. In this regard, cost reductions relative to values given by MATPOWER are 0.0005 %, 0.838 %, and 0.015 %, for the 9-bus, 30-bus, and 118-T systems, respectively. The simulation studies demonstrate the performance of the presented branch flow-based model in solving the OPF problem with accurate results.
2025
Authors
Pereira, P; Silva, R; Marques, JVA; Campilho, R; Matos, A; Pinto, AM;
Publication
IEEE ACCESS
Abstract
This work presents a bio-inspired Autonomous Underwater Vehicle (AUV) concept called Raya that enables high manoeuvrability required for close-range inspection and intervention tasks, while fostering endurance for long-range operations by enabling efficient navigation. The AUV has an estimated terminal velocity of 0.82 m/s in an optimal environment, and a capacity to acquire visual data and sonar measurements in all directions. Raya was designed with the potential to incorporate an electric manipulator arm of 6 degrees of freedom (DoF) for free-floating underwater intervention. Smart and biologically inspired principles applied to morphology and a strategic thruster configuration assure that Raya is capable of manoeuvring in all 6 DoFs even when equipped with a manipulator with a 5 kg payload. Extensive experiments were conducted using simulation tools and real-life environments to validate Raya's requirements and functionalities. The stresses and displacements of the rigid bodies were analysed using finite element analysis (FEA), and an estimation of the terminal forward velocity was achieved using a dynamic model. To assess the accuracy of the perception system, a reconstruction task took place in an indoor pool, resulting in a 3D reconstruction with average length, width, and depth errors below 1. 5%. The deployment of Raya in the ATLANTIS Coastal Testbed and Porto de Leix & otilde;es allowed the validation of the propulsion system and the gathering of valuable 2D and 3D data, thus proving the suitability of the vehicle for operation and maintenance (O&M) activities of underwater structures.
2025
Authors
Rocha, P; Ramos, AG; Silva, E;
Publication
INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH
Abstract
Additive Layer Manufacturing, particularly Fused Deposition Modelling, faces significant batch loss risks during production. The traditional Concurrent Printing Mode produces all parts simultaneously (layer-by-layer, bottom-to-top), efficiently using printing space but risking complete batch failure if problems occur. In contrast, Sequential Printing Mode produces one part at a time, reducing the risk of total batch loss but utilising printing space less efficiently. In this work, we propose an algorithm that, given a set of parts, performs the nesting of the parts for Concurrent Printing Mode, and for the first time, for the Sequential Printing Mode. A no-fit polygon based approach is used to handle geometry between pairs of parts by using multiple horizontal 2D layer projections of 3D parts, to ensure non-overlapping constraints and prevent machine-part collisions. A Greedy Randomized Adaptive Search Procedure is proposed, tested and benchmarked against a commercial software, using a new set of real-world instances. The approach shows the ability to find high-quality solutions. The approach significantly reduces the number of batches, minimises waste, reduces manufacturing time, and promotes parts quality.
2025
Authors
Tostado-Váliz, M; Bhakar, R; Javadi, MS; Nezhad, AE; Jurado, F;
Publication
IET RENEWABLE POWER GENERATION
Abstract
The increasing penetration of electric vehicles will be accompanied for a wide deployment of charging infrastructures. Large charging demand brings formidable challenges to existing power networks, driving them near to their operational limits. In this regard, it becomes pivotal developing novel energy management strategies for active distribution networks that take into account the strategic behaviour of parking lots. This paper focuses on this issue, developing a novel energy management tool for distribution networks encompassing distributed generators and parking lots. The new proposal casts as a tri-level game equilibrium framework where the profit maximization of lots is implicitly considered, thus ensuring that network-level decisions do not detract the profit of parking owners. The original tri-level model is reduced into a tractable single-level mixed-integer-linear programming by combining equivalent primal-dual and first-order optimality conditions of the distribution network and parking operational models. This way, the model can be solved using off-the-shelf solvers, with superiority against other approaches like metaheuristics. The developed model is validated in well-known 33-, and 85-bus radial distribution systems. Results show that, even under unfavourable conditions with limited distributed generation, charging demand is maximized, thus preserving the interests of parking owners. Moreover, the model is further validated through a number of simulations, showing its effectiveness. Finally, it is demonstrated that the developed tool scales well with the size of the system, easing its implementation in real-life applications.
2025
Authors
Baldo, A; Ferreira, PJS; Mendes Moreira, J;
Publication
EXPERT SYSTEMS
Abstract
With technological advancements, much data is being captured by sensors, smartphones, wearable devices, and so forth. These vast datasets are stored in data centres and utilized to forge data-driven models for the condition monitoring of infrastructures and systems through future data mining tasks. However, these datasets often surpass the processing capabilities of traditional information systems and methodologies due to their significant size. Additionally, not all samples within these datasets contribute valuable information during the model training phase, leading to inefficiencies. The processing and training of Machine Learning algorithms become time-consuming, and storing all the data demands excessive space, contributing to the Big Data challenge. In this paper, we propose two novel techniques to reduce large time-series datasets into more compact versions without undermining the predictive performance of the resulting models. These methods also aim to decrease the time required for training the models and the storage space needed for the condensed datasets. We evaluated our techniques on five public datasets, employing three Machine Learning algorithms: Holt-Winters, SARIMA, and LSTM. The outcomes indicate that for most of the datasets examined, our techniques maintain, and in several instances enhance, the forecasting accuracy of the models. Moreover, we significantly reduced the time required to train the Machine Learning algorithms employed.
2025
Authors
Affonso, M; Bessa, J; Gouveia, S;
Publication
IEEE Transactions on Industry Applications
Abstract
The connection of distributed energy resources in distribution system have been increasing significantly, requiring new approaches as market-based flexibility solutions. This paper proposes the coordinated operation of on-load tap changer and flexibility services traded in a local market for voltage regulation in medium and low voltage grid. The wider action of on-load tap changer is used to restore voltages at the medium voltage feeder based on sensitivity coefficients. If voltage violations persist, flexibilities are traded in a local energy market with a cost-effective approach, where flexibility costs are minimized, and are activated according to their effectiveness indicated by sensitivity coefficients. Sensitivity coefficients are obtained in the medium voltage using an analytical approach that can be applied to multi-phase unbalanced systems, and in the low voltage using a data-driven approach due to their limited observability. Results show the proposed approach can be an effective solution to regulate voltages, combining the wider action of on-load tap changer with local flexibility, avoiding unnecessary tap changes and requesting a small volume of flexibility services. © 1972-2012 IEEE.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.