2026
Authors
Cunha, J; Madeira, A; Barbosa, LS;
Publication
SOFTWARE ENGINEERING AND FORMAL METHODS. SEFM 2024 COLLOCATED WORKSHOPS
Abstract
This paper introduces Paraconsistent Reactive Graphs, as an extension of Reactive graphs that incorporates paraconsistency into the ground edges to address vagueness and inconsistency within dynamic systems. By assigning pairs of truth values to ground edges, this framework captures the uncertainty and contradictions stemming from incomplete or conflicting information. We explore the semantics of these graphs and provide a practical example to illustrate the proposed approach.
2026
Authors
de Almeida, JPR; Carrillo Galvez, A; Moran, JP; Soares, TA; Mourão, ZS;
Publication
Lecture Notes in Computer Science
Abstract
Seaport cranes operate continuously and consume large amounts of energy while aiming to minimise containerships’ berthing time. Although previous studies have contributed to addressing the crane scheduling problem, most have focused exclusively on loading time, often overlooking the aspect of energy consumption. Furthermore, crane activity is typically modelled in a simplified manner—commonly assuming a fixed cycle duration or constant energy usage when handling a container—without accounting for the impact of variable container masses. In this study, an energy-aware quay crane scheduling formulation for container terminals is proposed, highlighting the importance of integrating an energy model into the scheduling problem. The optimisation problem is formulated as a Mixed Integer Linear Programming (MILP) model. The objective is to minimise total energy costs by reordering the sequence in which containers are handled, while respecting precedence constraints defined by the ship’s stowage plan. Two solution methods—a MILP approach solved using CPLEX and a genetic algorithm (GA)—are compared. The results indicate that, for larger containerships, the genetic algorithm provides a more efficient solution method. Moreover, incorporating detailed energy consumption models for electric cranes may significantly reduce energy costs during containership handling operations. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.
2026
Authors
Ermakova, L; Campos, R; Bosser, AG; Miller, T;
Publication
EXPERIMENTAL IR MEETS MULTILINGUALITY, MULTIMODALITY, AND INTERACTION, CLEF 2025
Abstract
Humour poses a unique challenge for artificial intelligence, as it often relies on non-literal language, cultural references, and linguistic creativity. The JOKER Lab, now in its fourth year, aims to advance computational humour research through shared tasks on curated, multilingual datasets, with applications in education, computer-mediated communication and translation, and conversational AI. This paper provides an overview of the JOKER Lab held at CLEF 2025, detailing the setup and results of its three main tasks: (1) humour-aware information retrieval, which involves searching a document collection for humorous texts relevant to user queries in either English or Portuguese; (2) pun translation, focussed on humour-preserving translation of paronomastic jokes from English into French; and (3) onomastic wordplay translation, a task addressing the translation of name-based wordplay from English into French. The 2025 edition builds upon previous iterations by expanding datasets and emphasising nuanced, manual evaluation methods. The Task 1 results show a marked improvement this year, apparently due to participants' judicious combination of retrieval and filtering techniques. Tasks 2 and 3 remain challenging, not only in terms of system performance but also in terms of defining meaningful and reliable evaluation metrics.
2026
Authors
Pereira, T; Oliveira, EE; Amaral, A; Pereira, MG;
Publication
ADVANCES IN PRODUCTION MANAGEMENT SYSTEMS. CYBER-PHYSICAL-HUMAN PRODUCTION SYSTEMS: HUMAN-AI COLLABORATION AND BEYOND, APMS 2025, PT I
Abstract
This project was developed to improve the cost estimation process of new products within the Product Development Department of a furniture manufacturer. This work involved developing a methodology using Machine Learning (ML) models trained on products' existing data to predict the cost of new innovative ones based on similarities and given data. The ML models used were Linear Regression (LR), Light Gradient-Boosting Machine (LGBM), Random Forest (RF), and Support Vector Machine (SVM). The proposed methodology considers the estimation of the total cost of producing a product, which encompasses both material and operational costs. Throughout this project, several analyses were developed to identify and evaluate different independent variables that could explain the behaviour of these two cost components. The suitability of the different variables was studied by applying several ML models, and a set of functions that return an estimate of the cost as a function of these predictor variables was obtained. The proposed approach, which incorporates ML models into more complex variables to predict, resulted in a 19.29% reduction in estimation error.
2026
Authors
Santos, MJ; Jorge, D; Bonomi, V; Ramos, T; Póvoa, A;
Publication
INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH
Abstract
Today, logistics activities are driven by the pressing need to simultaneously increase efficiency, reduce costs, and promote sustainability. In our research, we tackle this challenge by adapting a general vehicle routing problem with deliveries and pickups to accommodate different types of customers. Customers requiring both delivery and pickup services are mandatory, while those needing only a pickup service (backhaul customers) are optional and are only visited if profitable. A mixed-integer linear programming model is formulated to minimize fuel consumption. This model can address various scenarios, such as allowing mandatory customers to be served with combined or separate delivery or pickup visits, and visiting optional customers either during or only after mandatory customer visits. An adaptive large neighborhood search is developed to solve instances adapted from the literature as well as to solve a real-case study of a beverage distributor. The results show the effectiveness of our approach, demonstrating the potential to utilize the available capacity on vehicles returning to the depot to create profitable and environmentally friendly routes, and so enhancing efficient, cost-effective, and sustainable logistics activities.
2026
Authors
Saadatmand, M; Khan, A; Marín, B; Paiva, CR; Asch, NV; Moran, G; Cammaerts, F; Snoeck, M; Mendes, A;
Publication
Lecture Notes in Computer Science
Abstract
The evolving landscape of software development demands that software testers continuously adapt to new tools, practices, and acquire new skills. This study investigates software testing competency needs in industry, identifies knowledge gaps in current testing education, and highlights competencies and gaps not addressed in academic literature. This is done by conducting two focus group sessions and interviews with professionals across diverse domains, including railway industry, healthcare, and software consulting and performing a curated small-scale scoping review. The study instrument, co-designed by members of the ENACTEST project consortium, was developed collaboratively and refined through multiple iterations to ensure comprehensive coverage of industry needs and educational gaps. In particular, by performing a thematic qualitative analysis, we report our findings and observations regarding: professional training methods, challenges in offering training in industry, different ways of evaluating the quality of training, identified knowledge gaps with respect to academic education and industry needs, future needs and trends in testing education, and knowledge transfer methods within companies. Finally, the scoping review results confirm knowledge gaps in areas such as AI testing, security testing and soft skills. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.