Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2026

Machine Learning and Knowledge Discovery in Databases. Research Track - European Conference, ECML PKDD 2025, Porto, Portugal, September 15-19, 2025, Proceedings, Part V

Authors
Ribeiro, RP; Pfahringer, B; Japkowicz, N; Larrañaga, P; Jorge, AM; Soares, C; Abreu, PH; Gama, J;

Publication
ECML/PKDD (5)

Abstract

2026

Coordinated Operation and Flexibility Management of Medium and Low Voltage Grids

Authors
Affonso, CM; Bessa, RJ; Gouveia, CS;

Publication
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS

Abstract
The connection of distributed energy resources in distribution system have been increasing significantly, requiring new approaches as market-based flexibility solutions. This paper proposes the coordinated operation of on-load tap changer and flexibility services traded in a local market for voltage regulation in medium and low voltage grid. The wider action of on-load tap changer is used to restore voltages at the medium voltage feeder based on sensitivity coefficients. If voltage violations persist, flexibilities are traded in a local energy market with a cost-effective approach, where flexibility costs are minimized, and are activated according to their effectiveness indicated by sensitivity coefficients. Sensitivity coefficients are obtained in the medium voltage using an analytical approach that can be applied to multi-phase unbalanced systems, and in the low voltage using a data-driven approach due to their limited observability. Results show the proposed approach can be an effective solution to regulate voltages, combining the wider action of on-load tap changer with local flexibility, avoiding unnecessary tap changes and requesting a small volume of flexibility services.

2026

Optimized Switched Reluctance Generator Operation in Wind Energy Applications

Authors
Touati, Z; Araújo, RE; Khedher, A;

Publication
Studies in Systems, Decision and Control

Abstract
Switched reluctance generators (SRG) are one of the machines with huge potential in wind power generation due to their reliability and robust design. However, the inherent characteristics of SRGs lead to significant challenges in achieving high efficiency and low output current and torque ripple simultaneously. The performance of SRGs is hindered by conflicting requirements. To address these issues, this chapter presents an optimization control strategy aimed at improving the static performance of SRGs. The chapter discusses the application of the Particle Swarm Optimization (PSO) technique to optimize the commutation angles, specifically the turn-on (?on) and turn-off (?off) angles, for an 8/6 SRG. The proposed strategy consists of two main steps. First, a Maximum Power Point Tracking (MPPT) algorithm is implemented to maximize power output at varying rotor speeds, combined with a direct power control method to regulate the power generated by the SRG. Second, a multi-objective function is developed to evaluate the SRG performance, considering key factors such as power output, output current ripple, and torque ripple. The simulation results indicate that implementing optimized turn-on and turn-off angles leads to a reduction in torque ripple from -1.78 Nm using the conventional technique to -0.66 Nm with the proposed method, corresponding to an impressive 63% decrease. Furthermore, the optimization strategy effectively maximizes the efficiency of the system employing an MPPT approach, ensuring optimal energy conversion under varying operating conditions. Future research directions include experimental validation of the proposed control system on real hardware to assess its practical feasibility and performance under real-world operating conditions. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.

2026

Machine Learning and Knowledge Discovery in Databases. Research Track - European Conference, ECML PKDD 2025, Porto, Portugal, September 15-19, 2025, Proceedings, Part IV

Authors
Ribeiro, RP; Pfahringer, B; Japkowicz, N; Larrañaga, P; Jorge, AM; Soares, C; Abreu, PH; Gama, J;

Publication
ECML/PKDD (4)

Abstract

2026

Scientific and industrial specialisation, structural change and economic growth: Global evidence

Authors
Teixeira, AAC; Pinto, A;

Publication
RESEARCH POLICY

Abstract
Understanding how structural change drives long-run growth requires jointly considering the dynamics of productive and scientific specialisations, and science-industry alignment. This paper develops and tests a unified framework that integrates evolutionary, structuralist, complexity, and innovation-systems perspectives to assess how productive and scientific specialisations, science-industry alignment, diversification, and global value chain integration shape economic performance. To operationalize this framework, we construct new indicators, including a Science-Industry Matching (SIM) index, measures of dynamic entry and relatedness density, and specialisation-based diversity indices, and apply them to a panel of up to 142 countries over 2000-2018/2023. Estimation relies on country fixed effects with Driscoll-Kraay standard errors to address heteroskedasticity, autocorrelation, and cross-sectional dependence. The results reveal that persistent specialisation in high- and medium-high-tech industries fosters growth, while low-tech dependence constrains it. Scientific specialisation in enabling fields such as mathematics, physics, chemistry, and energy/environmental sciences supports growth, but excessive concentration risks lock-in. Science-industry alignment enhances growth in advanced economies with strong absorptive capacity but penalises weaker systems. Industrial diversification often dilutes resources, whereas scientific diversification consistently promotes growth by broadening the knowledge base for recombination. Finally, integration into global value chains is growth-enhancing in developing economies, while advanced economies can sustain higher domestic value added without significant penalties.

2026

Machine Learning and Knowledge Discovery in Databases. Research Track - European Conference, ECML PKDD 2025, Porto, Portugal, September 15-19, 2025, Proceedings, Part III

Authors
Ribeiro, RP; Pfahringer, B; Japkowicz, N; Larrañaga, P; Jorge, AM; Soares, C; Abreu, PH; Gama, J;

Publication
ECML/PKDD (3)

Abstract

  • 4
  • 4399