2025
Authors
da Silva, EM; Schneider, D; Miceli, C; Correia, A;
Publication
Informatics
Abstract
2025
Authors
Tinoco, V; Silva, MF; Santos, FN; Morais, R; Magalhaes, SA; Oliveira, PM;
Publication
INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL
Abstract
With the global population on the rise and a declining agricultural labor force, the realm of robotics research in agriculture, such as robotic manipulators, has assumed heightened significance. This article undertakes a comprehensive exploration of the latest advancements in controllers tailored for robotic manipulators. The investigation encompasses an examination of six distinct controller paradigms, complemented by the presentation of three exemplars for each category. These paradigms encompass: (i) adaptive control, (ii) sliding mode control, (iii) model predictive control, (iv) robust control, (v) fuzzy logic control and (vi) neural network control. The article further introduces and presents comparative tables for each controller category. These controllers excel in tracking trajectories and efficiently reaching reference points with rapid convergence. The key point of divergence among these controllers resides in their inherent complexity.
2025
Authors
Caetano, R; Oliveira, JM; Ramos, P;
Publication
MATHEMATICS
Abstract
Accurate demand forecasting is essential for retail operations as it directly impacts supply chain efficiency, inventory management, and financial performance. However, forecasting retail time series presents significant challenges due to their irregular patterns, hierarchical structures, and strong dependence on external factors such as promotions, pricing strategies, and socio-economic conditions. This study evaluates the effectiveness of Transformer-based architectures, specifically Vanilla Transformer, Informer, Autoformer, ETSformer, NSTransformer, and Reformer, for probabilistic time series forecasting in retail. A key focus is the integration of explanatory variables, such as calendar-related indicators, selling prices, and socio-economic factors, which play a crucial role in capturing demand fluctuations. This study assesses how incorporating these variables enhances forecast accuracy, addressing a research gap in the comprehensive evaluation of explanatory variables within multiple Transformer-based models. Empirical results, based on the M5 dataset, show that incorporating explanatory variables generally improves forecasting performance. Models leveraging these variables achieve up to 12.4% reduction in Normalized Root Mean Squared Error (NRMSE) and 2.9% improvement in Mean Absolute Scaled Error (MASE) compared to models that rely solely on past sales. Furthermore, probabilistic forecasting enhances decision making by quantifying uncertainty, providing more reliable demand predictions for risk management. These findings underscore the effectiveness of Transformer-based models in retail forecasting and emphasize the importance of integrating domain-specific explanatory variables to achieve more accurate, context-aware predictions in dynamic retail environments.
2025
Authors
Costa, V; Oliveira, JM; Ramos, P;
Publication
Abstract
2025
Authors
Nogueira, M; Gomes, E;
Publication
Proceedings of the 18th International Joint Conference on Biomedical Engineering Systems and Technologies
Abstract
2025
Authors
Brito C.; Pina N.; Esteves T.; Vitorino R.; Cunha I.; Paulo J.;
Publication
Transportation Engineering
Abstract
Cities worldwide have agreed on ambitious goals regarding carbon neutrality. To do so, policymakers seek ways to foster smarter and cleaner transportation solutions. However, citizens lack awareness of their carbon footprint and of greener mobility alternatives such as public transports. With this, three main challenges emerge: (i) increase users’ awareness regarding their carbon footprint, (ii) provide personalized recommendations and incentives for using sustainable transportation alternatives and, (iii) guarantee that any personal data collected from the user is kept private. This paper addresses these challenges by proposing a new methodology. Created under the FranchetAI project, the methodology combines federated Artificial Intelligence (AI) and Greenhouse Gas (GHG) estimation models to calculate the carbon footprint of users when choosing different transportation modes (e.g., foot, car, bus). Through a mobile application that keeps the privacy of users’ personal information, the project aims at providing detailed reports to inform citizens about their impact on the environment, and an incentive program to promote the usage of more sustainable mobility alternatives.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.