Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2025

Using Explanations to Estimate the Quality of Computer Vision Models

Authors
Oliveira, F; Carneiro, D; Pereira, J;

Publication
HUMAN-CENTRED TECHNOLOGY MANAGEMENT FOR A SUSTAINABLE FUTURE, VOL 2, IAMOT

Abstract
Explainable AI (xAI) emerged as one of the ways of addressing the interpretability issues of the so-called black-box models. Most of the xAI artifacts proposed so far were designed, as expected, for human users. In this work, we posit that such artifacts can also be used by computer systems. Specifically, we propose a set of metrics derived from LIME explanations, that can eventually be used to ascertain the quality of each output of an underlying image classification model. We validate these metrics against quantitative human feedback, and identify 4 potentially interesting metrics for this purpose. This research is particularly useful in concept drift scenarios, in which models are deployed into production and there is no new labelled data to continuously evaluate them, becoming impossible to know the current performance of the model.

2025

ModelRadar: Aspect-based Forecast Evaluation

Authors
Cerqueira, V; Roque, L; Soares, C;

Publication
CoRR

Abstract

2025

Anatomically-Guided Inpainting for Local Synthesis of Normal Chest Radiographs

Authors
Pedrosa, J; Pereira, SC; Silva, J; Mendonça, AM; Campilho, A;

Publication
DEEP GENERATIVE MODELS, DGM4MICCAI 2024

Abstract
Chest radiography (CXR) is one of the most used medical imaging modalities. Nevertheless, the interpretation of CXR images is time-consuming and subject to variability. As such, automated systems for pathology detection have been proposed and promising results have been obtained, particularly using deep learning. However, these tools suffer from poor explainability, which represents a major hurdle for their adoption in clinical practice. One proposed explainability method in CXR is through contrastive examples, i.e. by showing an alternative version of the CXR except without the lesion being investigated. While image-level normal/healthy image synthesis has been explored in literature, normal patch synthesis via inpainting has received little attention. In this work, a method to synthesize contrastive examples in CXR based on local synthesis of normal CXR patches is proposed. Based on a contextual attention inpainting network (CAttNet), an anatomically-guided inpainting network (AnaCAttNet) is proposed that leverages anatomical information of the original CXR through segmentation to guide the inpainting for a more realistic reconstruction. A quantitative evaluation of the inpainting is performed, showing that AnaCAttNet outperforms CAttNet (FID of 0.0125 and 0.0132 respectively). Qualitative evaluation by three readers also showed that AnaCAttNet delivers superior reconstruction quality and anatomical realism. In conclusion, the proposed anatomical segmentation module for inpainting is shown to improve inpainting performance.

2025

Digital platforms to support the flexibility value chain, run flexibility markets, and manage energy communities

Authors
Rodrigues, L; Coelho, F; Mello, J; Villar, J;

Publication
Current Sustainable/Renewable Energy Reports

Abstract
Purpose of Review: This paper reviews the flexibility-centric value chain (FCVC) and analyses how coordinating digital platforms along the FCVC is essential for enabling FCVC activities and supporting key actors. Based on the FCVC, the digital infrastructure needed to support flexibility provision in power systems is reviewed, with special focus on the role of energy communities (ECs) as emerging relevant actors and potential aggregators of its members. Recent Findings: We review the Grid Data and Business Network (GDBN), a platform developed by the authors to support the FCVC, with special focus on those stages of the FCVC not properly supported by existing solutions. It also analyses platforms used in local flexibility markets (LFMs), and it presents the RECreation digital platform designed to manage ECs to support the participation in flexibility markets. Summary: Digital platforms are necessary for scaling flexibility services. The GDBN offers a comprehensive approach by enabling the FCVC and facilitating interoperability with existing platforms dedicated to specific segments, such as ECs and LFMs. By addressing current limitations in platform integration, this paper contributes to a clearer understanding of how digital tools can enable an efficient flexibility ecosystem. © The Author(s) 2025.

2025

CNN explanation methods for ordinal regression tasks

Authors
Barbero-Gómez, J; Cruz, RPM; Cardoso, JS; Gutiérrez, PA; Hervás-Martínez, C;

Publication
NEUROCOMPUTING

Abstract
The use of Convolutional Neural Network (CNN) models for image classification tasks has gained significant popularity. However, the lack of interpretability in CNN models poses challenges for debugging and validation. To address this issue, various explanation methods have been developed to provide insights into CNN models. This paper focuses on the validity of these explanation methods for ordinal regression tasks, where the classes have a predefined order relationship. Different modifications are proposed for two explanation methods to exploit the ordinal relationships between classes: Grad-CAM based on Ordinal Binary Decomposition (GradOBDCAM) and Ordinal Information Bottleneck Analysis (OIBA). The performance of these modified methods is compared to existing popular alternatives. Experimental results demonstrate that GradOBD-CAM outperforms other methods in terms of interpretability for three out of four datasets, while OIBA achieves superior performance compared to IBA.

2025

Hybrid Teaching and Learning in Higher Education: A Systematic Literature Review

Authors
Gudoniene, D; Staneviciene, E; Huet, I; Dickel, J; Dieng, D; Degroote, J; Rocio, V; Butkiene, R; Casanova, D;

Publication
SUSTAINABILITY

Abstract
Hybrid teaching, which integrates traditional in-person learning based on students' perspectives where online learning offers a flexible approach to education, combines the benefits of technology with face-to-face interactions. Moreover, teaching and learning in a hybrid way met several challenges for both teachers and learners, including technological problems, time management, communication difficulties, and assessment complexities. This systematic review investigates six main research questions: (1) What pedagogical frameworks are used in hybrid teaching and learning? (2) How can we enhance students' engagement in hybrid teaching and learning? (3) What is the impact of technological integration on hybrid learning scenarios, both for students and teachers? (4) How do training and support measures influence the willingness and ability of university teachers to implement hybrid teaching formats? (5) How do formative assessment and feedback methods in hybrid learning environments enable teachers to effectively monitor student progress and provide tailored support? (6) How does the implementation of hybrid learning affect student learning outcomes? This study identifies the following key themes: technological integration, pedagogical innovation, faculty support, student engagement, assessment practices, and learning outcomes. Our contribution of this literature review is related to teaching and learning by showing teachers the most appropriate way to avoid the challenges encountered when teaching in a hybrid way. These include strong technology integration, innovative pedagogical strategies, strong academic development and support, active student engagement, effective assessment practices, and positive learning outcomes.

  • 59
  • 4141