Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2024

Text2Story Lusa: A Dataset for Narrative Analysis in European Portuguese News Articles

Authors
Nunes, S; Jorge, AM; Amorim, E; Sousa, HO; Leal, A; Silvano, PM; Cantante, I; Campos, R;

Publication
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC/COLING 2024, 20-25 May, 2024, Torino, Italy.

Abstract
Narratives have been the subject of extensive research across various scientific fields such as linguistics and computer science. However, the scarcity of freely available datasets, essential for studying this genre, remains a significant obstacle. Furthermore, datasets annotated with narratives components and their morphosyntactic and semantic information are even scarcer. To address this gap, we developed the Text2Story Lusa datasets, which consist of a collection of news articles in European Portuguese. The first datasets consists of 357 news articles and the second dataset comprises a subset of 117 manually densely annotated articles, totaling over 50 thousand individual annotations. By focusing on texts with substantial narrative elements, we aim to provide a valuable resource for studying narrative structures in European Portuguese news articles. On the one hand, the first dataset provides researchers with data to study narratives from various perspectives. On the other hand, the annotated dataset facilitates research in information extraction and related tasks, particularly in the context of narrative extraction pipelines. Both datasets are made available adhering to FAIR principles, thereby enhancing their utility within the research community.

2024

IS-PEW: Identifying Influential Spreaders Using Potential Edge Weight in Complex Networks

Authors
Nandi, S; Malta, MC; Maji, G; Dutta, A;

Publication
COMPLEX NETWORKS & THEIR APPLICATIONS XII, VOL 3, COMPLEX NETWORKS 2023

Abstract
Identifying the influential spreaders in complex networks has emerged as an important research challenge to control the spread of (mis)information or infectious diseases. Researchers have proposed many centrality measures to identify the influential nodes (spreaders) in the past few years. Still, most of them have not considered the importance of the edges in unweighted networks. To address this issue, we propose a novel centrality measure to identify the spreading ability of the Influential Spreaders using the Potential Edge Weight method (IS-PEW). Considering the connectivity structure, the ability of information exchange, and the importance of neighbouring nodes, we measure the potential edge weight. The ranking similarity of spreaders identified by IS-PEW and the baseline centrality methods are compared with the Susceptible-Infectious-Recovered (SIR) epidemic simulator using Kendall's rank correlation. The spreading ability of the top-ranking spreaders is also compared for five different percentages of top-ranking node sets using six different real networks.

2024

An educational board game to promote the engagement of electric engineering students in ethical building of a sustainable and fair future

Authors
Monteiro, F; Sousa, A;

Publication
JOURNAL OF ENVIRONMENTAL EDUCATION

Abstract
Faced with the current unsustainability and recognizing the importance of engineering (and technology) in the Capitalocene, it is important to develop educational approaches that facilitate the awareness and training of engineering students to the sustainable future's construction. The main objective of the study is the evaluation of the educational approach developed (educational board game). It was used an action-research methodology and a quasi-experimental method. These results show that the developed game can be an important contribution in the engineers training to change the role of engineering to an ethical and responsible construction of a sustainable and fair future.

2024

Distribution-based detection of radiographic changes in pneumonia patterns: A COVID-19 case study

Authors
Pereira, SC; Rocha, J; Campilho, A; Mendonça, AM;

Publication
HELIYON

Abstract
Although the classification of chest radiographs has long been an extensively researched topic, interest increased significantly with the onset of the COVID-19 pandemic. Existing results are promising; however, the radiological similarities between COVID-19 and other types of respiratory diseases limit the success of conventional image classification approaches that focus on single instances. This study proposes a novel perspective that conceptualizes COVID-19 pneumonia as a deviation from a normative distribution of typical pneumonia patterns. Using a population- based approach, our approach utilizes distributional anomaly detection. This method diverges from traditional instance-wise approaches by focusing on sets of scans instead of individual images. Using an autoencoder to extract feature representations, we present instance-based and distribution-based assessments of the separability between COVID-positive and COVIDnegative pneumonia radiographs. The results demonstrate that the proposed distribution-based methodology outperforms conventional instance-based techniques in identifying radiographic changes associated with COVID-positive cases. This underscores its potential as an early warning system capable of detecting significant distributional shifts in radiographic data. By continuously monitoring these changes, this approach offers a mechanism for early identification of emerging health trends, potentially signaling the onset of new pandemics and enabling prompt public health responses.

2024

Rethinking negative sampling in content-based news recommendation

Authors
Rebelo, MA; Vinagre, J; Pereira, I; Figueira, A;

Publication
CoRR

Abstract

2024

Mental health innovative solutions in the context of the COVID-19 pandemic

Authors
Rocha, A; Almeida, F;

Publication
JOURNAL OF SCIENCE AND TECHNOLOGY POLICY MANAGEMENT

Abstract
Purpose This study aims to explore worldwide innovative solutions that have been proposed to mitigate the effects of COVID-19 pandemic on people's mental health. Design/methodology/approach A qualitative methodology is adopted, which performs an exploratory study considering the innovative projects identified by the Observatory for Public Sector Innovation framework. Additionally, the analysis of the relevance and characteristics of these projects are explored considering a multidimensional framework composed of five dimensions: novelty level; social need; improvement of society; sector neutrality; and level of emergence. Findings The findings reveal that the number of projects in the field of mental health is low, despite their strong relevance to their communities. These projects arise from a strong social need to protect especially the most vulnerable groups in this pandemic and involve a large number of partners in the public sector, business and civil society. The role of volunteering in the revitalization and growth of these initiatives is also recognized. Originality/value This study is relevant in both the theoretical and practical dimensions. It allows the exploration of these projects considering the dimensions of social innovation and offers practical implications that allow these projects to be replicated in other countries and regions.

  • 59
  • 4030