Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2022

Multiple instance learning for lung pathophysiological findings detection using CT scans

Authors
Frade, J; Pereira, T; Morgado, J; Silva, F; Freitas, C; Mendes, J; Negrao, E; de Lima, BF; da Silva, MC; Madureira, AJ; Ramos, I; Costa, JL; Hespanhol, V; Cunha, A; Oliveira, HP;

Publication
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING

Abstract
Lung diseases affect the lives of billions of people worldwide, and 4 million people, each year, die prematurely due to this condition. These pathologies are characterized by specific imagiological findings in CT scans. The traditional Computer-Aided Diagnosis (CAD) approaches have been showing promising results to help clinicians; however, CADs normally consider a small part of the medical image for analysis, excluding possible relevant information for clinical evaluation. Multiple Instance Learning (MIL) approach takes into consideration different small pieces that are relevant for the final classification and creates a comprehensive analysis of pathophysiological changes. This study uses MIL-based approaches to identify the presence of lung pathophysiological findings in CT scans for the characterization of lung disease development. This work was focus on the detection of the following: Fibrosis, Emphysema, Satellite Nodules in Primary Lesion Lobe, Nodules in Contralateral Lung and Ground Glass, being Fibrosis and Emphysema the ones with more outstanding results, reaching an Area Under the Curve (AUC) of 0.89 and 0.72, respectively. Additionally, the MIL-based approach was used for EGFR mutation status prediction - the most relevant oncogene on lung cancer, with an AUC of 0.69. The results showed that this comprehensive approach can be a useful tool for lung pathophysiological characterization.

2022

Health behaviours as predictors of the Mediterranean diet adherence: a decision tree approach

Authors
Boto, JM; Marreiros, A; Diogo, P; Pinto, E; Mateus, MP;

Publication
PUBLIC HEALTH NUTRITION

Abstract
Objective: This study aimed to identify health behaviours that determine adolescent's adherence to the Mediterranean diet (MD) through a decision tree statistical approach. Design: Cross-sectional study, with data collected through a self-fulfilment questionnaire with five sections: (1) eating habits; (2) adherence to the MD (KIDMED index); (3) physical activity; (4) health habits and (5) socio-demographic characteristics. Anthropometric and blood pressure data were collected by a trained research team. The Automatic Chi-square Interaction Detection (CHAID) method was used to identify health behaviours that contribute to a better adherence to the MD. Setting: Eight public secondary schools, in Algarve, Portugal. Participants: Adolescents with ages between 15 and 19 years (n 325). Results: According to the KIDMED index, we found a low adherence to MD in 9 center dot 0 % of the participants, an intermediate adherence in 45 center dot 5 % and a high adherence in 45 center dot 5 %. Participants that regularly have breakfast, eat vegetable soup, have a second piece of fruit/d, eat fresh or cooked vegetables 1 or more times a day, eat oleaginous fruits at least 2 to 3 times a week, and practice sports and leisure physical activities outside school show higher adherence to the MD (P < 0 center dot 001). Conclusions: The daily intake of two pieces of fruit and vegetables proved to be a determinant health behaviour for high adherence to MD. Strategies to promote the intake of these foods among adolescents must be developed and implemented.

2022

CENTERIS 2021 - International Conference on ENTERprise Information Systems / ProjMAN 2021 - International Conference on Project MANagement / HCist 2021 - International Conference on Health and Social Care Information Systems and Technologies 2021, Braga, Portugal

Authors
Cruz Cunha, MM; Martinho, R; Rijo, R; Domingos, D; Peres, E;

Publication
CENTERIS/ProjMAN/HCist

Abstract

2022

Why3-do: The Way of Harmonious Distributed System Proofs

Authors
Lourenco, CB; Pinto, JS;

Publication
PROGRAMMING LANGUAGES AND SYSTEMS, ESOP 2022

Abstract
We study principles and models for reasoning inductively about properties of distributed systems, based on programmed atomic handlers equipped with contracts. We present the Why3-do library, leveraging a state of the art software verifier for reasoning about distributed systems based on our models. A number of examples involving invariants containing existential and nested quantifiers (including Dijsktra’s self-stabilizing systems) illustrate how the library promotes contract-based modular development, abstraction barriers, and automated proofs.

2022

Classifying the content of social media images to support cultural ecosystem service assessments using deep learning models

Authors
Cardoso, AS; Renna, F; Moreno-Llorca, R; Alcaraz-Segura, D; Tabik, S; Ladle, RJ; Vaz, AS;

Publication
ECOSYSTEM SERVICES

Abstract
Crowdsourced social media data has become popular for assessing cultural ecosystem services (CES). Nevertheless, social media data analyses in the context of CES can be time consuming and costly, particularly when based on the manual classification of images or texts shared by people. The potential of deep learning for automating the analysis of crowdsourced social media content is still being explored in CES research. Here, we use freely available deep learning models, i.e., Convolutional Neural Networks, for automating the classification of natural and human (e.g., species and human structures) elements relevant to CES from Flickr and Wikiloc images. Our approach is developed for Peneda-Ger <^>es (Portugal) and then applied to Sierra Nevada (Spain). For Peneda-Ger <^>es, image classification showed promising results (F1-score ca. 80%), highlighting a preference for aesthetics appreciation by social media users. In Sierra Nevada, even though model performance decreased, it was still satisfactory (F1-score ca. 60%), indicating a predominance of people's pursuit for cultural heritage and spiritual enrichment. Our study shows great potential from deep learning to assist in the automated classification of human-nature interactions and elements from social media content and, by extension, for supporting researchers and stakeholders to decode CES distributions, benefits, and values.

2022

Traffic-Aware UAV Placement Using a Generalizable Deep Reinforcement Learning Methodology

Authors
Almeida, EN; Campos, R; Ricardo, M;

Publication
IEEE Symposium on Computers and Communications, ISCC 2022, Rhodes, Greece, June 30 - July 3, 2022

Abstract

  • 60
  • 2730