2025
Authors
Giagnolini, L; Koch, I; Tomasi, F; Teixeira Lopes, C;
Publication
Journal of Documentation
Abstract
Purpose – This study aims to comparatively evaluate two semantic models, ArchOnto (CIDOC CRM based) and Records in Contexts Ontology (RiC-O), for archival representation within the Linked Open Data framework. The research seeks to critically analyse their ability to represent archival documents, events, activities, and provenance through the application on a case study of historical baptism records. Design/methodology/approach – The study adopted a comparative approach, utilising the two models to represent a dataset of baptism records from a Portuguese parish spanning several centuries. This involved information extraction and conversion processes, transforming XML EAD finding aids into RDF to facilitate more explicit semantic representation and analysis. Findings – The analysis revealed distinctive strengths and limitations of each semantic model, providing nuanced insights into their respective capacities for archival description. The findings guide cultural heritage institutions in selecting and implementing the most suitable semantic model for their needs and pave the way for semantic alignment between the two models. Research limitations/implications – Although the case study explored the representation of a wide range of features, potential limitations include the specific contextual constraints of parish records and the need for broader comparative studies across diverse archival contexts. Originality/value – This paper offers original insights into semantic modelling for archival representations by providing a detailed comparative analysis of two ontological approaches. It offers valuable perspectives for archivists, digital humanities researchers, and cultural heritage professionals seeking to enhance the semantic richness of archival descriptions. © 2025 Emerald Publishing Limited
2025
Authors
Sousa, P; Campas, D; Andrade, J; Pereira, P; Gonçalves, T; Teixeira, LF; Pereira, T; Oliveira, HP;
Publication
Pattern Recognition and Image Analysis - 12th Iberian Conference, IbPRIA 2025, Coimbra, Portugal, June 30 - July 3, 2025, Proceedings, Part II
Abstract
Cancer is a leading cause of mortality worldwide, with breast and lung cancer being the most prevalent globally. Early and accurate diagnosis is crucial for successful treatment, and medical imaging techniques play a pivotal role in achieving this. This paper proposes a novel pipeline that leverages generative artificial intelligence to enhance medical images by combining synthetic image generation and super-resolution techniques. The framework is validated in two medical use cases (breast and lung cancers), demonstrating its potential to improve the quality and quantity of medical imaging data, ultimately contributing to more precise and effective cancer diagnosis and treatment. Overall, although some limitations do exist, this paper achieved satisfactory results for an image size which is conductive to specialist analysis, and further expands upon this field’s capabilities. © 2025 Elsevier B.V., All rights reserved.
2025
Authors
Rodrigues Nogueira, AF; Oliveira, HP; Teixeira, LF;
Publication
Pattern Recognition and Image Analysis - 12th Iberian Conference, IbPRIA 2025, Coimbra, Portugal, June 30 - July 3, 2025, Proceedings, Part I
Abstract
The aim of this work is to explore normalising flows to detect anomalous behaviours which is an essential task mainly for surveillance systems-related applications. To accomplish that, a series of ablation studies were performed by varying the parameters of the Spatio-Temporal Graph Normalising Flows (STG-NF) model [3] and combining it with attention mechanisms. Out of all these experiments, it was only possible to improve the state-of-the-art result for the UBnormal dataset by 3.4 percentual points (pp), for the Avenue by 4.7 pp and for the Avenue-HR by 3.2 pp. However, further research remains urgent to find a model that can give the best performance across different scenarios. The inaccuracies of the pose tracking and estimation algorithm seems to be the main factor limiting the models’ performance. The code is available at https://github.com/AnaFilipaNogueira/Abnormal-Human-Behaviour-Detection-using-Normalising-Flows-and-Attention-Mechanisms. © 2025 Elsevier B.V., All rights reserved.
2025
Authors
Pires, C; Nunes, S; Teixeira, LF;
Publication
CoRR
Abstract
2025
Authors
Zabjesky, C; Barbosa, B; Neves, S;
Publication
Effective Marketing and Consumer Behavior Tactics for High-End Products
Abstract
The main aim of this chapter is to study the digital touchpoints influencing customers' decisions in the five-star hospitality industry. This chapter adopted a qualitative methodology in the form of semi-structured interviews. The findings suggest the preeminent role of online travel agencies and hotel websites as the two most powerful touchpoints influencing the decision-making of the customer and serving as the principal means of making the reservation at the hotel. It also stresses the growing influence of customer-owned touchpoints, particularly user-generated content, in influencing customer perception. This research emphasizes the significance of personalized engagement in influencing customer satisfaction and loyalty. Overall, the study presents practical managerial implications for hoteliers, offering insights on how to effectively interact with customers at each stage of their journey, thereby enhancing both service delivery and overall guest experience. © 2025, IGI Global Scientific Publishing. All rights reserved.
2025
Authors
Silva, M; Paiva, ACR; Mendes, A;
Publication
SOFTWARE QUALITY JOURNAL
Abstract
Software testing plays a fundamental role in software engineering, involving the systematic evaluation of software to identify defects, errors, and vulnerabilities from the early stages of the development process. Education in software testing is essential for students and professionals, as it promotes quality and favours the construction of reliable software solutions. However, motivating students to learn software testing may be a challenge. To overcome this, educators may incorporate some strategies into the teaching and learning process, such as real-world examples, interactive learning, and gamification. Gamification aims to make learning software testing more engaging for students by creating a more enjoyable experience. One approach that has proven effective is to use serious games. This paper presents a novel serious game to teach white-box testing test case design techniques, named GAMFLEW (GAMe For LEarning White-box testing). It describes the design, game mechanics, and its implementation. It also presents a preliminary evaluation experiment with students to assess the usability, learnability, and perceived problems, among other aspects. The results obtained are encouraging.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.