Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Presentation

Advanced Computing Systems

The Centre for Advanced Computing Systems (CRACS) strives for scientific excellence in the areas of programming languages, parallel and distributed computing, information mining, security and privacy, focusing on developing scalable software systems for multidisciplinary applications in Engineering, Life Sciences, Social Networks, the Internet of Things, and more.


We explore deep theoretical and practical knowledge related to the design and development of programming languages and middleware for advanced computing systems - including parallel, distributed, high-performance, cloud, wireless, and IoT systems -, while mastering the concepts and methodologies that underpin trust, privacy, and security in computing systems.


Our research environment brings together talented junior and senior researchers, most of whom are university lecturers. Together, they form the critical mass and scientific expertise required to fulfil our mission.

Interest
Topics
Team
  • a
  • b
  • c
  • d
  • e
  • f
  • g
  • h
  • i
  • j
  • k
  • l
  • m
  • n
  • o
  • p
  • q
  • r
  • s
  • t
  • u
  • v
  • w
  • x
  • y
  • z
Publications

CRACS Publications

View all Publications

2026

Enhancing IoMT Security by Using Benford's Law and Distance Functions

Authors
Fernandes, P; Ciardhuáin, SO; Antunes, M;

Publication
PATTERN RECOGNITION AND IMAGE ANALYSIS, IBPRIA 2025, PT I

Abstract
The increasing connectivity of Internet of Medical Things (IoMT) devices has accentuated their susceptibility to cyberattacks. The sensitive data they handle makes them prime targets for information theft and extortion, while outdated and insecure communication protocols further elevate security risks. This paper presents a lightweight and innovative approach that combines Benford's law with statistical distance functions to detect attacks in IoMT devices. The methodology uses Benford's law to analyze digit frequency and classify IoMT devices traffic as benign or malicious, regardless of attack type. It employs distance-based statistical functions like Jensen-Shannon divergence, KullbackLeibler divergence, Pearson correlation, and the Kolmogorov test to detect anomalies. Experimental validation was conducted on the CIC-IoMT-2024 benchmark dataset, comprising 45 features and multiple attack types. The best performance was achieved with the Kolmogorov test (alpha = 0.01), particularly in DoS ICMP attacks, yielding a precision of.99.24%, a recall of.98.73%, an F1 score of.98.97%, and an accuracy of.97.81%. Jensen-Shannon divergence also performed robustly in detecting SYN-based attacks, demonstrating strong detection with minimal computational cost. These findings confirm that Benford's law, when combined with well-chosen statistical distances, offers a viable and efficient alternative to machine learning models for anomaly detection in constrained environments like IoMT.

2026

An Optimized Multi-class Classification for Industrial Control Systems

Authors
Palma, A; Antunes, M; Alves, A;

Publication
PATTERN RECOGNITION AND IMAGE ANALYSIS, IBPRIA 2025, PT I

Abstract
Ensuring the security of Industrial Control Systems (ICS) is increasingly critical due to increasing connectivity and cyber threats. Traditional security measures often fail to detect evolving attacks, necessitating more effective solutions. This paper evaluates machine learning (ML) methods for ICS cybersecurity, using the ICS-Flow dataset and Optuna for hyperparameter tuning. The selected models, namely Random Forest (RF), AdaBoost, XGBoost, Deep Neural Networks, Artificial Neural Networks, ExtraTrees (ET), and Logistic Regression, are assessed using macro-averaged F1-score to handle class imbalance. Experimental results demonstrate that ensemble-based methods (RF, XGBoost, and ET) offer the highest overall detection performance, particularly in identifying commonly occurring attack types. However, minority classes, such as IP-Scan, remain difficult to detect accurately, indicating that hyperparameter tuning alone is insufficient to fully deal with imbalanced ICS data. These findings highlight the importance of complementary measures, such as focused feature selection, to enhance classification capabilities and protect industrial networks against a wider array of threats.

2026

Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track - European Conference, ECML PKDD 2025, Porto, Portugal, September 15-19, 2025, Proceedings, Part IX

Authors
Dutra, I; Pechenizkiy, M; Cortez, P; Pashami, S; Jorge, AM; Soares, C; Abreu, PH; Gama, J;

Publication
ECML/PKDD (9)

Abstract

2026

Machine Learning and Knowledge Discovery in Databases. Research Track and Applied Data Science Track - European Conference, ECML PKDD 2025, Porto, Portugal, September 15-19, 2025, Proceedings, Part VIII

Authors
Pfahringer, B; Japkowicz, N; Larrañaga, P; Ribeiro, RP; Dutra, I; Pechenizkiy, M; Cortez, P; Pashami, S; Jorge, AM; Soares, C; Abreu, PH; Gama, J;

Publication
ECML/PKDD (8)

Abstract

2026

Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track and Demo Track - European Conference, ECML PKDD 2025, Porto, Portugal, September 15-19, 2025, Proceedings, Part X

Authors
Dutra, I; Pechenizkiy, M; Cortez, P; Pashami, S; Pasquali, A; Moniz, N; Jorge, AM; Soares, C; Abreu, PH; Gama, J;

Publication
ECML/PKDD (10)

Abstract