Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Facts & Numbers
000
Presentation

Robotics and Autonomous Systems

At CRAS, our mission is to develop innovative robotic solutions for complex environments and multiple operations, including data gathering, inspection, mapping, surveillance, and intervention.

We work in four main areas of research: autonomous navigation; long-term deployments; sensing, mapping, and intervention; multiple platform operations.

Latest News
Robotics

The revolution in the operation and maintenance of offshore wind farms involves robots and Artificial Intelligence - featuring INESC TEC

AEROSUB (Automated Inspection Robots for Surface, Aerial and Underwater Substructures) is the name of the new €12.1M project coordinated by INESC TEC, whose main objective is to revolutionise the operation and maintenance of fixed and floating offshore wind farms. How? Through the development of world-class technological solutions that reduce the operating costs of renewable energy production infrastructures in extreme environments. To achieve this goal, the project will - by 2030 - equip several robotic solutions with Artificial Intelligence (AI) and data analysis technologies.

30th January 2025

Robotics

INESC TEC part of pilot experiment for underwater noise monitoring

South of São Miguel, in the archipelago of the Azores, three buoys spent 24 hours at sea collecting data - in this case, noise related to human activities that has an impact on the behaviour of cetaceans. For the first time, it was possible to collect information about underwater noise off São Miguel - more than 10 kilometres from the coast; INESC TEC joined this initiative.

02nd December 2024

Robotics

INESC TEC researchers organised underwater location challenge at the Breaking the Surface 2024 conference

INESC TEC researchers organised and carried out a technical challenge at the international conference Breaking the Surface 2024 (BTS), which took place from September 30 to October 7 in Biograd na Moru, Croatia. This interdisciplinary event (currently in the 16th edition) focuses on robotics and marine technology. This year's edition brought together 198 experts and researchers from different areas (representing more than 20 countries), who exchanged knowledge and experiences in the field of marine robotics and associated applications.

28th October 2024

Robotics

Once again, INESC TEC broke the Portuguese record with robots descending to a depth of 830m in the largest robotic exercise in the world

REPMUS - Robotic Experimentation and Prototyping with Maritime Unmanned Systems, the largest operational experimentation exercise of unmanned systems in the world, took place in Portugal yet again, between September 9 and 27 (Troia and Sesimbra).

17th October 2024

Robotics

Portugal at the forefront with new technology for measuring radon gas and improving global climate projections

For the next four years, INESC TEC will lead an international consortium with a budget of €2.6M, aimed at using advanced techniques to measure environmental radioactivity. According to estimates, by 2028, new technological solutions will be available that can improve both climate research - particularly in estimating greenhouse gas emissions - and radiological protection for the population and the environment.

02nd October 2024

Team
001

Laboratories

Robotics and Autonomous Systems Laboratory

Publications

CRAS Publications

View all Publications

2025

A Multimodal Perception System for Precise Landing of UAVs in Offshore Environments

Authors
Claro, RM; Neves, FSP; Pinto, AMG;

Publication
Journal of Field Robotics

Abstract
The integration of precise landing capabilities into unmanned aerial vehicles (UAVs) is crucial for enabling autonomous operations, particularly in challenging environments such as the offshore scenarios. This work proposes a heterogeneous perception system that incorporates a multimodal fiducial marker, designed to improve the accuracy and robustness of autonomous landing of UAVs in both daytime and nighttime operations. This work presents ViTAL-TAPE, a visual transformer-based model, that enhance the detection reliability of the landing target and overcomes the changes in the illumination conditions and viewpoint positions, where traditional methods fail. VITAL-TAPE is an end-to-end model that combines multimodal perceptual information, including photometric and radiometric data, to detect landing targets defined by a fiducial marker with 6 degrees-of-freedom. Extensive experiments have proved the ability of VITAL-TAPE to detect fiducial markers with an error of 0.01 m. Moreover, experiments using the RAVEN UAV, designed to endure the challenging weather conditions of offshore scenarios, demonstrated that the autonomous landing technology proposed in this work achieved an accuracy up to 0.1 m. This research also presents the first successful autonomous operation of a UAV in a commercial offshore wind farm with floating foundations installed in the Atlantic Ocean. These experiments showcased the system's accuracy, resilience and robustness, resulting in a precise landing technology that extends mission capabilities of UAVs, enabling autonomous and Beyond Visual Line of Sight offshore operations. © 2025 Wiley Periodicals LLC.

2025

Evaluation of Deep Learning Models for Polymetallic Nodule Detection and Segmentation in Seafloor Imagery

Authors
Loureiro, G; Dias, A; Almeida, J; Martins, A; Silva, E;

Publication
Journal of Marine Science and Engineering

Abstract
Climate change has led to the need to transition to clean technologies, which depend on an number of critical metals. These metals, such as nickel, lithium, and manganese, are essential for developing batteries. However, the scarcity of these elements and the risks of disruptions to their supply chain have increased interest in exploiting resources on the deep seabed, particularly polymetallic nodules. As the identification of these nodules must be efficient to minimize disturbance to the marine ecosystem, deep learning techniques have emerged as a potential solution. Traditional deep learning methods are based on the use of convolutional layers to extract features, while recent architectures, such as transformer-based architectures, use self-attention mechanisms to obtain global context. This paper evaluates the performance of representative models from both categories across three tasks: detection, object segmentation, and semantic segmentation. The initial results suggest that transformer-based methods perform better in most evaluation metrics, but at the cost of higher computational resources. Furthermore, recent versions of You Only Look Once (YOLO) have obtained competitive results in terms of mean average precision.

2025

Identification and explanation of disinformation in wiki data streams

Authors
Arriba Pérez, Fd; García Méndez, S; Leal, F; Malheiro, B; Burguillo, JC;

Publication
Integrated Computer-Aided Engineering

Abstract
Social media platforms, increasingly used as news sources for varied data analytics, have transformed how information is generated and disseminated. However, the unverified nature of this content raises concerns about trustworthiness and accuracy, potentially negatively impacting readers’ critical judgment due to disinformation. This work aims to contribute to the automatic data quality validation field, addressing the rapid growth of online content on wiki pages. Our scalable solution includes stream-based data processing with feature engineering, feature analysis and selection, stream-based classification, and real-time explanation of prediction outcomes. The explainability dashboard is designed for the general public, who may need more specialized knowledge to interpret the model’s prediction. Experimental results on two datasets attain approximately 90% values across all evaluation metrics, demonstrating robust and competitive performance compared to works in the literature. In summary, the system assists editors by reducing their effort and time in detecting disinformation.

2025

DBD plasma-treated polyester fabric coated with doped PEDOT:PSS for thermoregulation

Authors
Magalhaes, C; Ribeiro, AI; Rodrigues, R; Meireles, A; Alves, AC; Rocha, J; de Lima, FP; Martins, M; Mitu, B; Satulu, V; Dinescu, G; Padrao, J; Zille, A;

Publication
APPLIED SURFACE SCIENCE

Abstract
The manufacturing process of thermoregulation products with polyester (PES) fabric and conductive polymers such as poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonate) (PEDOT:PSS) with proper wearability, comfort, and high performance is still a challenge due to low adhesion, environment instability and nonuniform coatings. This study presents a simple and effective method for producing thermoregulatory PES fabrics using the Joule heating effect. Textiles treated with dielectric barrier discharge (DBD) plasma were functionalized with PEDOT:PSS incorporating secondary dopants, such as dimethyl sulfoxide (DMSO) and glycerol (GLY). PEDOT:PSS was used because it does not compromise the mechanical properties of base materials. DBD plasma treatment was applied to PES to improve the substrate's functional groups and consequently increase adhesion and homogeneity of the PEDOT:PSS on the substrate. The polymer were applied to the textiles by dip-pad-drycure method ensuring uniform distribution and homogeneous heating of the materials. The samples' conductivity, impedance, potential and Joule effect, and their morphological, chemical and thermal properties were studied. Control samples without plasma treatment and secondary dopants were also prepared. The results showed that the DBD-treated samples, coated with 5 layers of PEDOT:PSS, doped with DMSO 7 % (w/v), displayed the best conductivity and Joule effect performance reaching 44.3 degrees C after 1 h.

2024

Probabilistic Positioning of a Mooring Cable in Sonar Images for In-Situ Calibration of Marine Sensors

Authors
Oliveira, AJ; Ferreira, BM; Cruz, NA; Diamant, R;

Publication
IEEE TRANSACTIONS ON MOBILE COMPUTING

Abstract
The calibration of sensors stationed along a cable in marine observatories is a time-consuming and expensive operation that involves taking the mooring out of the water periodically. In this paper, we present a method that allows an underwater vehicle to approach a mooring, in order to take reference measurements along the cable for in-situ sensor calibration. We use the vehicle's Mechanically Scanned Imaging Sonar (MSIS) to identify the cable's reflection within the sonar image. After pre-processing the image to remove noise, enhance contour lines, and perform smoothing, we employ three detection steps: 1) selection of regions of interest that fit the cable's reflection pattern, 2) template matching, and 3) a track-before-detect scheme that utilized the vehicle's motion. The later involves building a lattice of template matching responses for a sequence of sonar images, and using the Viterbi algorithm to find the most probable sequence of cable locations that fits the maximum speed assumed for the surveying vessel. Performance is explored in pool and sea trials, and involves an MSIS onboard an underwater vehicle scanning its surrounding to identify a steel-core cable. The results show a sub-meter accuracy in the multi-reverberant pool environment and in the sea trial. For reproducibility, we share our implementation code.

Facts & Figures

40Researchers

2016

7R&D Employees

2020

7Proceedings in indexed conferences

2020

Contacts