Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

André Coelho obtained a Ph.D. in Telecommunications in 2023 and an M.Sc. in Electrical and Computer Engineering in 2016, both from the University of Porto, Portugal. Currently, he is a researcher in the Wireless Networks (WiN) research group of the Centre for Telecommunications and Multimedia (CTM) at INESC TEC.

Since joining INESC TEC in 2015, André Coelho has been actively involved in several national and European research projects, including NEXUS, PRODUTECH R3, Test Bed 5G & Digital Transformation, CONVERGE, OVERWATCH, ResponDrone, InterConnect, RAWFIE, WISE, 5Go, and CHIC. He has also been part of the supervision team of 20+ master's and undergraduate students.

His research interests include the management of communications resources for Quality of Service guarantees in emerging wireless networks. He has a special interest in flying networks formed by Unmanned Aerial Vehicles (UAVs).

Interest
Topics
Details

Details

  • Name

    André Filipe Coelho
  • Role

    Assistant Researcher
  • Since

    02nd November 2015
007
Publications

2024

Autonomous Control and Positioning of a Mobile Radio Access Node Employing the O-RAN Architecture

Authors
Queirós, G; Correia, P; Coelho, A; Ricardo, M;

Publication
2024 19TH WIRELESS ON-DEMAND NETWORK SYSTEMS AND SERVICES CONFERENCE, WONS

Abstract
Over the years, mobile networks were deployed using monolithic hardware based on proprietary solutions. Recently, the concept of open Radio Access Networks (RANs), including the standards and specifications from O-RAN Alliance, has emerged. It aims at enabling open, interoperable networks based on independent virtualized components connected through open interfaces. This paves the way to collect metrics and to control the RAN components by means of software applications such as the O-RAN-specified xApps. We propose a private standalone network leveraged by a mobile RAN employing the O-RAN architecture. The mobile RAN consists of a radio node (gNB) carried by a Mobile Robotic Platform autonomously positioned to provide on-demand wireless connectivity. The proposed solution employs a novel Mobility Management xApp to collect and process metrics from the RAN, while using an original algorithm to define the placement of the mobile RAN. This allows for the improvement of the connectivity offered to the User Equipments.

2024

CONVERGE: A Vision-Radio Research Infrastructure Towards 6G and Beyond

Authors
Teixeira, FB; Ricardo, M; Coelho, A; Oliveira, HP; Viana, P; Paulino, N; Fontes, H; Marques, P; Campos, R; Pessoa, LM;

Publication
2024 JOINT EUROPEAN CONFERENCE ON NETWORKS AND COMMUNICATIONS & 6G SUMMIT, EUCNC/6G SUMMIT 2024

Abstract
Telecommunications and computer vision have evolved separately so far. Yet, with the shift to sub-terahertz (sub-THz) and terahertz (THz) radio communications, there is an opportunity to explore computer vision technologies together with radio communications, considering the dependency of both technologies on Line of Sight. The combination of radio sensing and computer vision can address challenges such as obstructions and poor lighting. Also, machine learning algorithms, capable of processing multimodal data, play a crucial role in deriving insights from raw and low-level sensing data, offering a new level of abstraction that can enhance various applications and use cases such as beamforming and terminal handovers. This paper introduces CONVERGE, a pioneering vision-radio paradigm that bridges this gap by leveraging Integrated Sensing and Communication (ISAC) to facilitate a dual View-to-Communicate, Communicate-to-View approach. CONVERGE offers tools that merge wireless communications and computer vision, establishing a novel Research Infrastructure (RI) that will be open to the scientific community and capable of providing open datasets. This new infrastructure will support future research in 6G and beyond concerning multiple verticals, such as telecommunications, automotive, manufacturing, media, and health.

2024

SUPPLY: Sustainable Multi-UAV Performance-Aware Placement Algorithm for Flying Networks

Authors
Ribeiro, P; Coelho, A; Campos, R;

Publication
IEEE ACCESS

Abstract
Unmanned Aerial Vehicles (UAVs) are versatile platforms for carrying communications nodes such as Wi-Fi Access Points and cellular Base Stations. Flying Networks (FNs) offer on-demand wireless connectivity where terrestrial networks are impractical or unsustainable. However, managing communications resources in FNs presents challenges, particularly in optimizing UAV placement to maximize Quality of Service (QoS) for Ground Users (GUs) while minimizing energy consumption, given the UAVs' limited battery life. Existing multi-UAV placement solutions primarily focus on maximizing coverage areas, assuming static UAV positions and uniform GU distribution, overlooking energy efficiency and heterogeneous QoS requirements. We propose the Sustainable multi-UAV Performance-aware Placement (SUPPLY) algorithm, which defines and optimizes UAV trajectories to reduce energy consumption while ensuring QoS based on Signal-to-Noise Ratio (SNR) in the links with GUs. Additionally, we introduce the Multi-UAV Energy Consumption (MUAVE) simulator to evaluate energy consumption. Using both MUAVE and ns-3 simulators, we evaluate SUPPLY in typical and random networking scenarios, focusing on energy consumption and network performance. Results show that SUPPLY reduces energy consumption by up to 25% with minimal impact on throughput and delay.

2024

Simple Gateway Positioning for Backhaul Connectivity in Energy-aware Flying Networks

Authors
Ribeiro, P; Coelho, A; Campos, R;

Publication
International Conference on Wireless and Mobile Computing, Networking and Communications

Abstract
Unmanned Aerial Vehicles (UAVs) are increasingly used as wireless communications nodes, serving as Wi-Fi Access Points and Cellular Base Stations. To enable energy-efficient access networks, we previously introduced the Sustainable multi-UAV Performance-aware Placement (SUPPLY) algorithm, which focuses on the energy-efficient placement of UAVs as Flying Access Points (FAPs) to serve Ground Users (GUs). However, SUPPLY did not address the backhaul link. This paper presents the Simple Gateway Positioning (SGWP) solution, which optimizes the position of a Gateway (GW) UAV to ensure backhaul connectivity in a two-tier network. We integrate SUPPLY for FAP positioning with SGWP for GW placement and evaluate their combined performance under various scenarios involving different GUs' Quality of Service (QoS) requirements and positions. Our results demonstrate that SUPPLY and SGWP can be used jointly in a two-tier network with minimal performance degradation. © 2024 IEEE.

2024

Obstacle-Aware Positioning of a Mobile Robotic Platform for Next-Generation Wireless Networks

Authors
Costa, A; Duarte, P; Coelho, A; Campos, R;

Publication
International Conference on Wireless and Mobile Computing, Networking and Communications

Abstract
The 6G paradigm and the massive usage of in-terconnected wireless devices introduced the need for flexible wireless networks. A promising approach lies in employing Mobile Robotic Platforms (MRPs) to create communications cells on-demand. The challenge consists in positioning the MRPs to improve the wireless connectivity offered. This is exacerbated in millimeter wave (mmWave), Terahertz (THz), and visible light-based networks, which imply the establishment of short-range, Line of Sight (LoS) wireless links to take advantage of the ultra-high bandwidth channels available. This paper proposes a solution to enable the obstacle-aware, autonomous positioning of MRPs and provide LoS wireless connectivity to communications devices. It consists of 1) a Vision Module that uses video data gathered by the MRP to determine the location of obstacles, wireless devices and users, and 2) a Control Module, which autonomously positions the MRP based on the information provided by the Vision Module. The proposed solution was validated in simulation and through experimental testing, showing that it is able to position an MRP while ensuring LoS wireless links between a mobile communications cell and wireless devices or users. © 2024 IEEE.

Supervised
thesis

2022

Slicing-Aware Flying Communications Network

Author
João Cristiano Mourão Rodrigues

Institution
INESCTEC

2022

Control and Positioning of a 5G Radio Access Node Deployed in a Mobile Robotic Platform

Author
David Miguel de Almeida Coimbra Maia

Institution
INESCTEC

2020

Gateway Positioning in Flying Networks

Author
Hugo Daniel Teixeira Rodrigues

Institution
INESCTEC

2019

Routing for Flying Networks using Software-Defined Networking

Author
André Duarte Correia de Oliveira

Institution
INESCTEC

2019

Network Planning Model for NB-IoT

Author
Renato Mendes da Cruz

Institution
INESCTEC