Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

Armando Jorge Miranda de Sousa received his PhD in 2004, in Electrical and Computer Engineering (ECE) at University of Porto - Faculty of Engineering (FEUP), Portugal. His thesis work was in the subarea of Robotics and Automation.

He is currently an Associate Professor in the ECE department of FEUP and an integrated senior researcher at Centre for Intelligent and Industrial Systems (CRIIS) at the INESC TEC interface institute. He earned in 2014 the international pedagogical certification "ING.PAED.IGIP" from the International Society for Engineering Pedagogy and is currently an active member for the European Society for Engineering Education (SEFI).

His main research areas include Higher Education and Robotics, but most recently focusing on Robot Learning and Learning for Cyber Physical Systems. Application areas include not only intelligent robots for agriculture and forest but also robotic manipulation of flexible objects. As a frequent participant in robotic contests, some of which used AI in real world robotics, he has earned several national and international merits (examples: vice champion of RoboCup Robotic Soccer in 2006, winner of Autonomous Driving of Portuguese Robotics Open of 2022).

He has also earned educational awards such as the University of Porto (UP) excellence award in 2015 and 10 best at ECEL 2015 excellence e-learning awards. He has published over 80 indexed peer reviewed articles both in pedagogical issues and more technical areas. Also, he has a patent entitled "Device and method for identifying a cork stopper and respective kit". He is also involved in educational and technical funded projects such as "IntelWheels 2" and "blockchain.pt".

He currently (co-)supervises 7 PhD students.

More details in https://www.cienciavitae.pt/en/1C17-7D93-4CF3 and https://fe.up.pt/asousa.

Interest
Topics
Details

Details

  • Name

    Armando Sousa
  • Role

    Senior Researcher
  • Since

    01st June 2009
008
Publications

2025

Human-in-the-loop Multi-objective Bayesian Optimization for Directed Energy Deposition with in-situ monitoring

Authors
Sousa, J; Sousa, A; Brueckner, F; Reis, LP; Reis, A;

Publication
ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING

Abstract
Directed Energy Deposition (DED) is a free-form metal additive manufacturing process characterized as toolless, flexible, and energy-efficient compared to traditional processes. However, it is a complex system with a highly dynamic nature that presents challenges for modeling and optimization due to its multiphysics and multiscale characteristics. Additionally, multiple factors such as different machine setups and materials require extensive testing through single-track depositions, which can be time and resource-intensive. Single-track experiments are the foundation for establishing optimal initial parameters and comprehensively characterizing bead geometry, ensuring the accuracy and efficiency of computer-aided design and process quality validation. We digitized a DED setup using the Robot Operating System (ROS 2) and employed a thermal camera for real-time monitoring and evaluation to streamline the experimentation process. With the laser power and velocity as inputs, we optimized the dimensions and stability of the melt pool and evaluated different objective functions and approaches using a Response Surface Model (RSM). The three-objective approach achieved better rewards in all iterations and, when implemented in areal setup, allowed to reduce the number of experiments and shorten setup time. Our approach can minimize waste, increase the quality and reliability of DED, and enhance and simplify human-process interaction by leveraging the collaboration between human knowledge and model predictions.

2025

Artificial Intelligence for Control in Laser-Based Additive Manufacturing: A Systematic Review

Authors
Sousa, J; Brandau, B; Darabi, R; Sousa, A; Brueckner, F; Reis, A; Reis, LP;

Publication
IEEE ACCESS

Abstract
Laser-based additive manufacturing (LAM) offers the ability to produce near-net-shape metal parts with unparalleled energy efficiency and flexibility in both geometry and material selection. Despite advantages, these processes are inherently, as they are characterized by multiphysics interactions, multiscale phenomena, and highly dynamic behaviors, making their modeling and optimization particularly challenging. Artificial intelligence (AI) has emerged as a promising tool for enhancing the monitoring and control of additive manufacturing. This paper presents a systematic review of AI applications for real-time control of laser-based manufacturing processes, analyzing 16 relevant articles sourced from Scopus, IEEE Xplore, and Web of Science databases. The primary objective of this work is to contribute to the advancement of autonomous manufacturing systems capable of self-monitoring and self-correction, ensuring optimal part quality, enhanced efficiency, and reduced human intervention. Our findings indicate that 62.5 % of the 16 analyzed studies have deployed AI-driven controllers in real-world scenarios, with over 56 % using AI for control strategies, such as Reinforcement Learning. Furthermore, 62.5 % of the studies employed AI for process modeling or monitoring, which was integral to the development or data pipelines of the controllers. By defining a groundwork for future developments, this review not only highlights current advancements but also hints future innovations that will likely include AI-based controllers.

2025

Spray Quality Assessment on Water-Sensitive Paper Comparing AI and Classical Computer Vision Methods

Authors
Simoes, I; Sousa, AJ; Baltazar, A; Santos, F;

Publication
AGRICULTURE-BASEL

Abstract
Precision agriculture seeks to optimize crop yields while minimizing resource use. A key challenge is achieving uniform pesticide spraying to prevent crop damage and environmental contamination. Water-sensitive paper (WSP) is a common tool used for assessing spray quality, as it visually registers droplet impacts through color change. This work introduces a smartphone-based solution for capturing WSP images within vegetation, offering a tool for farmers to assess spray quality in real-world conditions. To achieve this, two approaches were explored: classical computer vision techniques and machine learning (ML) models (YOLOv8, Mask-RCNN, and Cellpose). Addressing the challenges of limited real-world data and the complexity of manual annotation, a programmatically generated synthetic dataset was employed to enable sim-to-real transfer learning. For the task of WSP segmentation within vegetation, YOLOv8 achieved an average Intersection over Union of 97.76%. In the droplet detection task, which involves identifying individual droplets on WSP, Cellpose achieved the highest precision of 96.18%, in the presence of overlapping droplets. While classical computer vision techniques provided a reliable baseline, they struggled with complex cases. Additionally, ML models, particularly Cellpose, demonstrated accurate droplet detection even without fine-tuning.

2024

Inspection of Part Placement Within Containers Using Point Cloud Overlap Analysis for an Automotive Production Line

Authors
Costa C.M.; Dias J.; Nascimento R.; Rocha C.; Veiga G.; Sousa A.; Thomas U.; Rocha L.;

Publication
Lecture Notes in Mechanical Engineering

Abstract
Reliable operation of production lines without unscheduled disruptions is of paramount importance for ensuring the proper operation of automated working cells involving robotic systems. This article addresses the issue of preventing disruptions to an automotive production line that can arise from incorrect placement of aluminum car parts by a human operator in a feeding container with 4 indexing pins for each part. The detection of the misplaced parts is critical for avoiding collisions between the containers and a high pressure washing machine and also to avoid collisions between the parts and a robotic arm that is feeding parts to a air leakage inspection machine. The proposed inspection system relies on a 3D sensor for scanning the parts inside a container and then estimates the 6 DoF pose of the container followed by an analysis of the overlap percentage between each part reference point cloud and the 3D sensor data. When the overlap percentage is below a given threshold, the part is considered as misplaced and the operator is alerted to fix the part placement in the container. The deployment of the inspection system on an automotive production line for 22 weeks has shown promising results by avoiding 18 hours of disruptions, since it detected 407 containers having misplaced parts in 4524 inspections, from which 12 were false negatives, while no false positives were reported, which allowed the elimination of disruptions to the production line at the cost of manual reinspection of 0.27% of false negative containers by the operator.

2024

Pedagogical innovation to captivate students to ethics education in engineering

Authors
Monteiro, F; Sousa, A;

Publication
JOURNAL OF APPLIED RESEARCH IN HIGHER EDUCATION

Abstract
PurposeThe purpose of the article is to develop an innovative pedagogic tool: an escape room board game to be played in-class, targeting an introduction to an ethics course for engineering students. The design is student-centred and aims to increase students' appreciation, commitment and motivation to learning ethics, a challenging endeavour for many technological students.Design/methodology/approachThe methodology included the design, development and in-class application of the mentioned game. After application, perception data from students were collected with pre- and post-action questionnaire, using a quasi-experimental method.FindingsThe results allow to conclude that the developed game persuaded students be in class in an active way. The game mobilizes body and mind to the learning process with many associated advantages to foster students' motivation, curiosity, interest, commitment and the need for individual reflection after information search.Research limitations/implicationsThe main limitation of the game is its applicability to large classes (it has been successfully tested with a maximum of 65 students playing simultaneously in the same room).Originality/valueThe originalities and contributions include the presented game that helped to captivate students to ethics area, a serious problem felt by educators and researchers in this area. This study will be useful to educators of ethics in engineering and will motivate to design tools for a similar pedagogical approach, even more so in areas where students are not especially motivated. The developed tool is available from the authors at no expense.

Supervised
thesis

2023

Formação ética em engenharia com recurso a metodologias ativas: caso de estudo em Engenharia Eletrotécnica

Author
Maria de Fátima Coelho Monteiro

Institution
UP-FEUP

2023

Robotic bin picking of flexible entangled tubes

Author
Gonçalo da Mota Laranjeira Torres Leão

Institution
UP-FEUP

2023

AI-Based, Real-Time Object Detection in the Public Landscape

Author
André Vilhena da Costa

Institution
UP-FEUP

2023

seguimento tridimensional da bola através de sistema de visão de baixo custo para aplicação em desportos praticados em recinto desportivo coberto

Author
José Carlos Lobinho Gomes

Institution
UP-FEUP

2023

Teaching Robot Learning in ROS2

Author
Filipe Reis Almeida

Institution
UP-FEUP