Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

I am a lecturer in the Department of Computer Science, School of Sciences of University of Porto, Portugal. I obtained a B.Sc. degree in Computer Science from State University of Rio de Janeiro, Brazil, in 1985, and an M.Sc. degree in the Systems Engineering and Computer Science department of Federal University of Rio de Janeiro, Brazil, in 1988. My Ph.D. degree was obtained from Bristol University, UK, in 1995. In 1998, I started as a lecturer in the Department of Systems Engineering and Computer Science of COPPE, an institution for postgraduate studies in Engineering, at Federal University of Rio de Janeiro, where I taught courses on Operating Systems, Concurrent Programming and Topics on High Performance Computing, at M.Sc. and Ph.D. levels, and Artificial Intelligence and Logic Programming, at undergraduate level. In Februrary 2007 I moved to Portugal where I am now located. During the periods between October 2001 and December 2002, April 2004 and March 2005, Aug 2010 and Feb 2011, and Oct 2014 and Mar 2015, I worked as a visiting researcher at University of Wisconsin-Madison, USA, in the department of Biostatistics and Medical Informatics, and at the Radiology Department of the School of Sciences and Public Health. During these periods, I worked for machine learning projects funded by NSF, DARPA and American Air Force (projects COLLEAGUE, EELD and EAGLE), and NLM (Project ABLe) and started to work with applications that demanded a huge amount of resources. At this time, I had the opportunity to work with the Condor team, and to largely use the Condor resource manager to run experiments. My main research areas are Logic programming, Inductive Logic Programming, and Parallel Logic Programming systems. I served as Program Comittee member of several workshops and conferences in these areas. I supervised several M.Sc. and Ph.D. students in these areas. I have more than 80 publications in conferences and journals. I also participated or was the principal investigator of several projects funded by CNPq (Brazil), FCT (Portugal) and the EU. I am a member of the EELA (E-science grid facility for Europe and Latin America) initiative, whose main objective is to promote and maintain the infrastructure of hardware and software between Europe and Latin America. Currently, I have been working on machine learning techniques based on Inductive Logic programming, but still using parallelzation and grid environments to be able to perform machine learning experiments.

Interest
Topics
Details

Details

  • Name

    Inês Dutra
  • Role

    External Research Collaborator
  • Since

    01st January 2009
003
Publications

2024

Proposal and Definition of a Novel Intelligent System for the Diagnosis of Bipolar Disorder Based on the Use of Quick Response Codes Containing Single Nucleotide Polymorphism Data

Authors
Pinheira, AG; Casal Guisande, M; Comesaña Campos, A; Dutra, I; Nascimento, C; Cerqueiro Pequeño, J;

Publication
Lecture Notes in Educational Technology

Abstract
Bipolar Disorder (BD) is a chronic and severe psychiatric illness presenting with mood alterations, including manic, hypomanic, and depressive episodes. Due to the high clinical heterogeneity and lack of biological validation, both treatment and diagnosis of BD remain problematic and challenging. In this context, this paper proposes a novel intelligent system applied to the diagnosis of BD. First, each patient’s single nucleotide polymorphism (SNP) data is represented by QR codes, which reduces the high dimensionality of the problem and homogenizes the data representation. For the initial tests of the system, the Wellcome Trust Case Control Consortium (WTCCC) dataset was used. The preliminary results are encouraging, with an AUC value of 0.82 and an accuracy of 82%, correctly classifying all cases and most controls. This approach reduces the dimensionality of large amounts of data and can help improve diagnosis and deliver the right treatment to the patient. Furthermore, the architecture of the system is versatile and could be adapted and used to diagnose other diseases where there is also high dimensionality. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024.

2024

Instance-wise Uncertainty for Class Imbalance in Semantic Segmentation

Authors
Almeida, L; Dutra, I; Renna, F;

Publication
CoRR

Abstract

2024

Program Synthesis using Inductive Logic Programming for the Abstraction and Reasoning Corpus

Authors
Rocha, FM; Dutra, I; Costa, VS;

Publication
CoRR

Abstract

2023

Improving the Characterization and Comparison of Football Players with Spatial Flow Motifs

Authors
Barbosa, A; Ribeiro, P; Dutra, I;

Publication
COMPLEX NETWORKS AND THEIR APPLICATIONS XI, COMPLEX NETWORKS 2022, VOL 2

Abstract
Association Football is probably the world's most popular sport. Being able to characterise and compare football players is therefore a very important and impactful task. In this work we introduce spatial flow motifs as an extension of previous work on this problem, by incorporating both temporal and spatial information into the network analysis of football data. Our approach considers passing sequences and the role of the player in those sequences, complemented with the physical position of the field where the passes occurred. We provide experimental results of our proposed methodology on real-life event data from the Italian League, showing we can more accurately identify players when compared to using purely topological data.

2023

An Online Anomaly Detection Approach for Fault Detection on Fire Alarm Systems

Authors
Tome, ES; Ribeiro, RP; Dutra, I; Rodrigues, A;

Publication
SENSORS

Abstract
The early detection of fire is of utmost importance since it is related to devastating threats regarding human lives and economic losses. Unfortunately, fire alarm sensory systems are known to be prone to failures and frequent false alarms, putting people and buildings at risk. In this sense, it is essential to guarantee smoke detectors' correct functioning. Traditionally, these systems have been subject to periodic maintenance plans, which do not consider the state of the fire alarm sensors and are, therefore, sometimes carried out not when necessary but according to a predefined conservative schedule. Intending to contribute to designing a predictive maintenance plan, we propose an online data-driven anomaly detection of smoke sensors that model the behaviour of these systems over time and detect abnormal patterns that can indicate a potential failure. Our approach was applied to data collected from independent fire alarm sensory systems installed with four customers, from which about three years of data are available. For one of the customers, the obtained results were promising, with a precision score of 1 with no false positives for 3 out of 4 possible faults. Analysis of the remaining customers' results highlighted possible reasons and potential improvements to address this problem better. These findings can provide valuable insights for future research in this area.

Supervised
thesis

2019

Exascale computing with custom Linear Mixed Model kernels and GPU accelerators for Genomic Wide Association Studies and personalized medicine

Author
Christopher David Harrison

Institution
UP-FCUP

2019

Towards Improving the Search for Multi-Relational Concepts in ILP

Author
Alberto José Rajão Barbosa

Institution
UP-FCUP

2017

Improving the search for multi-relational concepts in ILP

Author
Alberto José Rajão Barbosa

Institution
UP-FCUP

2017

Execução e Gestão de Aplicações Conteinerizadas

Author
Diogo Cristiano dos Santos Reis

Institution
UP-FCUP

2017

Weighted Multiple Kernel Learning for Breast Cancer Diagnosis applied to Mammograms

Author
Tiago André Guedes Santos

Institution
UP-FCUP