Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

João Pascoal Faria holds a PhD in Electrical and Computer Engineering from the Faculty of Engineering of the University of Porto in 1999, where he is currently Associate Professor at the Department of Informatics Engineering and Director of the Integrated Master in Informatics and Computing Engineering (MIEIC). He his a member of the Software Engineering Research Group (softeng.fe.up.pt) and researcher at INESC TEC, where he coordinates the Software Engineering area. He represents FEUP and INESC TEC in the Technical Comission for Health Informatics (CT 199) and FEUP as President of the Sectorial Comission for the Quality of Information and Communications Technology (CS/03), in the scope of the Portuguese Quality Institute (IPQ). In the past, he worked with several software companies (Novabase Saúde, Sidereus, Medidata) and was a co-founder of two other (Qualisoft and Strongstep). He has more than 25 years of experience in education, research, development and consultancy in several software engineering areas. He is the main author of a rapid application development tool (SAGA), based on domain specific languages, with more than 25 years of market presence and evolution (1989-present). He is currently involved in research projects, supervisions and consulting activities in the areas of model-based testing, software process improvement and model-driven development.

Interest
Topics
Details

Details

  • Name

    João Pascoal Faria
  • Role

    Senior Researcher
  • Since

    14th October 1985
001
Publications

2024

Report from the 14th International Workshop on Automating Test Case Design, Selection, and Evaluation (A-TEST 2023)

Authors
Faria, JP; Verbeek, F; Fasolino, AR;

Publication
ACM SIGSOFT Softw. Eng. Notes

Abstract

2024

Quality of Information and Communications Technology - 17th International Conference on the Quality of Information and Communications Technology, QUATIC 2024, Pisa, Italy, September 11-13, 2024, Proceedings

Authors
Bertolino, A; Faria, JP; Lago, P; Semini, L;

Publication
QUATIC

Abstract

2024

APITestGenie: Automated API Test Generation through Generative AI

Authors
Pereira, A; Lima, B; Faria, JP;

Publication
CoRR

Abstract

2023

Applying Machine Learning to Estimate the Effort and Duration of Individual Tasks in Software Projects

Authors
Sousa, AO; Veloso, DT; Goncalves, HM; Faria, JP; Mendes Moreira, J; Graca, R; Gomes, D; Castro, RN; Henriques, PC;

Publication
IEEE ACCESS

Abstract
Software estimation is a vital yet challenging project management activity. Various methods, from empirical to algorithmic, have been developed to fit different development contexts, from plan-driven to agile. Recently, machine learning techniques have shown potential in this realm but are still underexplored, especially for individual task estimation. We investigate the use of machine learning techniques in predicting task effort and duration in software projects to assess their applicability and effectiveness in production environments, identify the best-performing algorithms, and pinpoint key input variables (features) for predictions. We conducted experiments with datasets of various sizes and structures exported from three project management tools used by partner companies. For each dataset, we trained regression models for predicting the effort and duration of individual tasks using eight machine learning algorithms. The models were validated using k-fold cross-validation and evaluated with several metrics. Ensemble algorithms like Random Forest, Extra Trees Regressor, and XGBoost consistently outperformed non-ensemble ones across the three datasets. However, the estimation accuracy and feature importance varied significantly across datasets, with a Mean Magnitude of Relative Error (MMRE) ranging from 0.11 to 9.45 across the datasets and target variables. Nevertheless, even in the worst-performing dataset, effort estimates aggregated to the project level showed good accuracy, with MMRE = 0.23. Machine learning algorithms, especially ensemble ones, seem to be a viable option for estimating the effort and duration of individual tasks in software projects. However, the quality of the estimates and the relevant features may depend largely on the characteristics of the available datasets and underlying projects. Nevertheless, even when the accuracy of individual estimates is poor, the aggregated estimates at the project level may present a good accuracy due to error compensation.

2023

Case Studies of Development of Verified Programs with Dafny for Accessibility Assessment

Authors
Faria, JP; Abreu, R;

Publication
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Abstract
Formal verification techniques aim at formally proving the correctness of a computer program with respect to a formal specification, but the expertise and effort required for applying formal specification and verification techniques and scalability issues have limited their practical application. In recent years, the tremendous progress with SAT and SMT solvers enabled the construction of a new generation of tools that promise to make formal verification more accessible for software engineers, by automating most if not all of the verification process. The Dafny system is a prominent example of that trend. However, little evidence exists yet about its accessibility. To help fill this gap, we conducted a set of 10 case studies of developing verified implementations in Dafny of some real-world algorithms and data structures, to determine its accessibility for software engineers. We found that, on average, the amount of code written for specification and verification purposes is of the same order of magnitude as the traditional code written for implementation and testing purposes (ratio of 1.14) – an “overhead” that certainly pays off for high-integrity software. The performance of the Dafny verifier was impressive, with 2.4 proof obligations generated per line of code written, and 24 ms spent per proof obligation generated and verified, on average. However, we also found that the manual work needed in writing auxiliary verification code may be significant and difficult to predict and master. Hence, further automation and systematization of verification tasks are possible directions for future advances in the field. © 2023, IFIP International Federation for Information Processing.

Supervised
thesis

2023

Task Prediction and Planning Tool for Complex Engineering Tasks

Author
Afonso Maria Rebordão Caiado de Sousa

Institution
UP-FEUP

2023

Assessing Accuracy of Low Cost Sensors in Sign Language Recognition

Author
Daniel Lima Fernandes Vieira

Institution
UP-FEUP

2023

Adoption of a BDD Framework and its Guidelines

Author
João Renato da Costa Pinto

Institution
UP-FEUP

2022

Integration of Fraud Detection Services in Payment Processing Systems

Author
Ana Margarida Ruivo Loureiro

Institution
UP-FEUP

2022

A Pattern-based Test Platform for IoT and eHealth

Author
Pedro José Brandão Almeida

Institution
UP-FEUP