Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

José Boaventura-Cunha is an Engineer in Electronics and Telecommunications from the University of Aveiro (1985) and has a PhD in Electrotechnical and Computer Engineering from UTAD-University of Trás-os-Montes and Alto Douro, Portugal (2002). Currently holds the position of Associate Professor with habilitation at the the School of Sciences and Technology of UTAD.
Since 2012 he is a member of the CRIIS-Center for Robotics in Industry and Intelligent Systems at INESC TEC - Institute of Systems and Computer Engineering, Technology and Science and is Coordinator of the pole of INESC TEC at UTAD.
His research interests are related to the areas of Instrumentation, modeling and control applied to industrial and agro-forestry processes.

Interest
Topics
Details

Details

  • Name

    José Boaventura
  • Role

    Research Coordinator
  • Since

    01st June 2012
014
Publications

2024

Enhancing Grapevine Node Detection to Support Pruning Automation: Leveraging State-of-the-Art YOLO Detection Models for 2D Image Analysis

Authors
Oliveira, F; da Silva, DQ; Filipe, V; Pinho, TM; Cunha, M; Cunha, JB; dos Santos, FN;

Publication
SENSORS

Abstract
Automating pruning tasks entails overcoming several challenges, encompassing not only robotic manipulation but also environment perception and detection. To achieve efficient pruning, robotic systems must accurately identify the correct cutting points. A possible method to define these points is to choose the cutting location based on the number of nodes present on the targeted cane. For this purpose, in grapevine pruning, it is required to correctly identify the nodes present on the primary canes of the grapevines. In this paper, a novel method of node detection in grapevines is proposed with four distinct state-of-the-art versions of the YOLO detection model: YOLOv7, YOLOv8, YOLOv9 and YOLOv10. These models were trained on a public dataset with images containing artificial backgrounds and afterwards validated on different cultivars of grapevines from two distinct Portuguese viticulture regions with cluttered backgrounds. This allowed us to evaluate the robustness of the algorithms on the detection of nodes in diverse environments, compare the performance of the YOLO models used, as well as create a publicly available dataset of grapevines obtained in Portuguese vineyards for node detection. Overall, all used models were capable of achieving correct node detection in images of grapevines from the three distinct datasets. Considering the trade-off between accuracy and inference speed, the YOLOv7 model demonstrated to be the most robust in detecting nodes in 2D images of grapevines, achieving F1-Score values between 70% and 86.5% with inference times of around 89 ms for an input size of 1280 x 1280 px. Considering these results, this work contributes with an efficient approach for real-time node detection for further implementation on an autonomous robotic pruning system.

2024

Pruning End-Effectors State of the Art Review

Authors
Oliveira, F; Tinoco, V; Valente, A; Pinho, TM; Cunha, JB; Santos, F;

Publication
Progress in Artificial Intelligence - 23rd EPIA Conference on Artificial Intelligence, EPIA 2024, Viana do Castelo, Portugal, September 3-6, 2024, Proceedings, Part I

Abstract
Pruning consists on an agricultural trimming procedure that is crucial in some species of plants to promote healthy growth and increased yield. Generally, this task is done through manual labour, which is costly, physically demanding, and potentially dangerous for the worker. Robotic pruning is an automated alternative approach to manual labour on this task. This approach focuses on selective pruning and requires the existence of an end-effector capable of detecting and cutting the correct point on the branch to achieve efficient pruning. This paper reviews and analyses different end-effectors used in robotic pruning, which helped to understand the advantages and limitations of the different techniques used and, subsequently, clarified the work required to enable autonomous pruning. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

2024

A Model Predictive Control Approach to Enhance Obstacle Avoidance While Performing Autonomous Docking

Authors
Pinto A.; Ferreira B.M.; Cruz N.; Soares S.P.; Cunha J.B.;

Publication
Oceans Conference Record (IEEE)

Abstract
In the present paper, we propose a control approach to perform docking of an autonomous surface vehicle (ASV) while avoiding surrounding obstacles. This control architecture is composed of two sequential controllers. The first outputs a feasible trajectory between the vessel's initial and target state while avoiding obstacles. This trajectory also minimizes the vehicle velocity while performing the maneuvers to increase the safety of onboard passengers. The second controller performs trajectory tracking while accounting for the actuator's physical limits (extreme actuation values and the rate of change). The method's performance is tested on simulation, as it enables a reliable ground truth method to validate the control architecture proposed.

2024

Precision Fertilization: A critical review analysis on sensing technologies for nitrogen, phosphorous and potassium quantification

Authors
Silva, FM; Queiros, C; Pereira, M; Pinho, T; Barroso, T; Magalhaes, S; Boaventura, J; Santos, F; Cunha, M; Martins, RC;

Publication
COMPUTERS AND ELECTRONICS IN AGRICULTURE

Abstract
Fertilization is paramount for agriculture productivity and food security. Plant nutrition pre-established recipes and nutrient uptake are rarely managed by changing the fertilizer composition at the different stages of the plant life cycle. Herein we perform a literature review analysis - since the year 2000 and onwards - of the state-of-the-art capabilities of Nitrogen, Phosphorous, and Potassium (NPK) sensors for liquid fertilizers ( e.g. , hydroponics). From the initial search hits of 1660 results, only 53 publications had relevant information for this topic; from these, only 9 had NPK quantitative information. Qualitative analysis was performed by determining the number of publications for each nutrient, according to sample complexity and existing single, multiplexed or hybrid technologies. Quantitative assessment was performed by extracting the bias and linearity, the limit of detection and concentration ranges of sensor operation, framed into the context of the sensor technology development stage and sample compositional complexity. The most common technologies are colorimetry, ionselective electrodes, optrodes, chemosensors, and optical spectroscopy. The most abundant technologies are for nitrate quantification, from which ion-selective electrodes are the most widely used technology, and sensors for phosphate quantification are the less developed. Most are at low technological levels of development, not dealing with the complexity of agriculture samples due to matrix effects and interference. Measuring the fertilizer composition, nutrient uptake, the state of the chemical network, and controlling the release of nutrients using new functional materials, is one of the most important challenges ahead for the existence of precision fertilization. Intelligent sensing and smart materials are today the most successful strategy for dealing with matrix effects and interferences, being led by ion-selective electrodes and spectroscopy technologies.

2023

2D LiDAR-Based System for Canopy Sensing in Smart Spraying Applications

Authors
Baltazar, AR; Dos Santos, FN; De Sousa, ML; Moreira, AP; Cunha, JB;

Publication
IEEE ACCESS

Abstract
The efficient application of phytochemical products in agriculture is a complex issue that demands optimised sprayers and variable rate technologies, which rely on advanced sensing systems to address challenges such as overdosage and product losses. This work developed a system capable of processing different tree canopy parameters to support precision fruit farming and environmental protection using intelligent spraying methodologies. This system is based on a 2D light detection and ranging (LiDAR) sensor and a Global Navigation Satellite System (GNSS) receiver integrated into a sprayer driven by a tractor. The algorithm detects the canopy boundaries, allowing spray only in the presence of vegetation. The spray volume spared evaluates the system's performance compared to a Tree Row Volume (TRV) methodology. The results showed a 28% reduction in the overdosage of spraying product. The second step in this work was calculating and adjusting the amount of liquid to apply based on the tree volume. Considering this parameter, the saving obtained had an average value for the right and left rows of 78%. The volume of the trees was also monitored in a georeferenced manner with the creation of a occupation grid map. This map recorded the trajectory of the sprayer and the detected trees according to their volume.

Supervised
thesis

2023

Sistema autónomo para reaproveitamento de águas quentes do banho

Author
Luís Miguel Sampaio Sanches Ferreira

Institution
UTAD

2023

Localization and Mapping Based on Semantic and Multi-layer Maps Concepts

Author
André Silva Pinto de Aguiar

Institution
UTAD

2023

Planejamentode preensão adaptável: uma nova arquitetura de Pipeline de agarramento unificado e modular

Author
João Pedro Carvalho de Souza

Institution
UTAD

2023

Adaptive Grasping Planning: A Novel Unified and Modular Grasping Pipeline Architecture

Author
João Pedro Carvalho de Souza

Institution
UTAD

2022

Localization and Mapping Based on Semantic and Multi-layer Maps Concepts

Author
André Silva Pinto de Aguiar

Institution
UTAD