Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Details

Details

  • Name

    Mário Cunha
  • Role

    Senior Researcher
  • Since

    01st February 2018
025
Publications

2026

Economic benchmarking of assisted pollination methods for kiwifruit flowers: Assessment of cost-effectiveness of robotic solution

Authors
Pinheiro, I; Moura, P; Rodrigues, L; Pacheco, AP; Teixeira, JG; Valente, LG; Cunha, M; Neves Dos Santos, FN;

Publication
Agricultural Systems

Abstract
In 2023, global kiwifruit production reached over 4.4 million tonnes, highlighting the crop's significant economic importance. However, achieving high yields depends on adequate pollination. In Actinidia species, pollen is transferred by insects from male to female flowers on separate plants. Natural pollination faces increasing challenges due to the decline in pollinator populations and climate variability, driving the adoption of assisted pollination methods. This study examines the Portuguese kiwifruit sector, one of the world's top 12 producers, using a novel mixed-methods approach that integrates both qualitative and quantitative analyses to assess the feasibility of robotic pollination. The qualitative study identifies the benefits and challenges of current methods and explores how robotic pollination could address these challenges. The quantitative analysis explores the cost-effectiveness and practicality of implementing robotic pollination as a product and service. Findings indicate that most farmers use handheld pollination devices but face pollen wastage and application timing challenges. Economic analysis establishes a break-even point of €685 per hectare for an annual single application, with a first robotic pollination of €17 146 becoming cost-effective for orchards of at least 3.5 hectares and a second robotic solution of €34 293 becoming cost-effective for orchards up to 7 hectares. A robotic pollination service priced at €685 per hectare per application presents a low-risk and a viable alternative for growers. This study provides robust economic insights supporting the adoption of robotic pollination technologies. This study is crucial to make informed decisions to enhance kiwifruit production's productivity and sustainability through precise robotic-assisted pollination. © 2025 Elsevier B.V., All rights reserved.

2025

Grapevine inflorescence segmentation and flower estimation based on Computer Vision techniques for early yield assessment

Authors
Moreira, G; dos Santos, FN; Cunha, M;

Publication
SMART AGRICULTURAL TECHNOLOGY

Abstract
Yield forecasting is of immeasurable value in modern viticulture to optimize harvest scheduling and quality management. The number of inflorescences and flowers per vine is one of the main components and their assessment serves as an early predictor, which can explain up to 85-90% of yield variability. This study introduces a sophisticated framework that integrates the benchmark of different advanced deep learning and classic image processing to automate the segmentation of grapevine inflorescences and the detection of single flowers, to achieve precise, early, and non-invasive yield predictions in viticulture. The YOLOv8n model achieved superior performance in localizing inflorescences ( F1-Score (Box) = 95.9%) and detecting individual flowers (F1-Score = 91.4%), while the YOLOv5n model excelled in the segmentation task ( F1-Score (Mask) = 98.6%). The models demonstrated a strong correlation (R-2 > 90.0%) between detected and visible flowers in inflorescences. A statistical analysis confirmed the robustness of the framework, with the YOLOv8 model once again standing out, showing no significant differences in error rates across diverse grapevine morphologies and varieties, ensuring wide applicability. The results demonstrate that these models can significantly improve the accuracy of early yield predictions, offering a noninvasive, scalable solution for Precision Viticulture. The findings underscore the potential for Computer Vision technology to enhance vineyard management practices, leading to better resource allocation and improved crop quality.

2025

Metabolic mapping for precision grape maturation: Application of a tomography-like method for site-specific management

Authors
Tosin, R; Rodrigues, L; Santos-Campos, M; Gonçalves, I; Barbosa, C; Santos, F; Martins, R; Cunha, M;

Publication
SMART AGRICULTURAL TECHNOLOGY

Abstract
This study demonstrates the application of a tomography-like (TL) method to monitor grape maturation dynamics over two growing seasons (2021-2022) in the Douro Wine Region. Using a Vis-NIR point-of-measurement sensor, which employs visible and near-infrared light to penetrate grape tissues non-destructively and provide spectral data to predict internal composition, this approach captures non-destructive measurements of key physicochemical properties, including soluble solids content (SSC), weight-to-volume ratio, chlorophyll and anthocyanin levels across internal grape tissues-skin, pulp, and seeds-over six post-veraison stages. The collected data were used to generate detailed metabolic maps of maturation, integrating topographical factors such as altitude and NDVI-based (normalised difference vegetation index) vigour assessments, which revealed significant (p < 0.05) variations in SSC, chlorophyll, and anthocyanin levels across vineyard zones. The metabolic maps generated from the TL method enable high-throughput data to reveal the impact of environmental variability on grape maturation across distinct vineyard areas. Predictive models using random forest (RF) and self-learning artificial intelligence (SL-AI) algorithms showed RF's robustness, achieving stable predictions with R-2 >= 0.86 and MAPE <= 33.83 %. To illustrate the TL method's practical value, three hypothetical decision models were developed for targeted winemaking objectives based on SSC, chlorophyll in the pulp, and anthocyanin in the skin and seeds. These models underscore the TL method's ability to support site-specific management (SSM) by providing actionable agricultural practices (e.g. harvest) into vineyard management, guiding winemakers to implement tailored interventions based on metabolic profiles rather than only cultivar characteristics. This precision viticulture (PV) approach enhances wine quality and production efficiency by aligning vineyard practices with specific wine quality goals.

2025

Digital assessment of plant diseases: A critical review and analysis of optical sensing technologies for early plant disease diagnosis

Authors
Pereira, MR; Tosin, R; dos Santos, FN; Tavares, F; Cunha, M;

Publication
COMPUTERS AND ELECTRONICS IN AGRICULTURE

Abstract
The present critical literature review describes the state-of-the-art innovative proximal (ground-based) solutions for plant disease diagnosis, suitable for promoting more precise and efficient phytosanitary measures. Research and development of new sensors for this purpose are currently a challenge. Present procedures and diagnosis techniques depend on visual characteristics and symptoms to be initiated and applied, compromising an early intervention. Also, these methods were designed to confirm the presence of pathogens, which did not have the required high throughput and speed to support real-time agronomic decisions in field extensions. Proximal sensor-based systems are a reasonable tool for an efficient and economic disease assessment. This work focused on identifying the application of optical and spectroscopic sensors as a tool for disease diagnosis. Biophoton emission, fluorescence spectroscopy, laser-induced breakdown spectroscopy, multi- and hyperspectral spectroscopy (HS), nuclear magnetic resonance spectroscopy, Raman spectroscopy, RGB imaging, thermography, volatile organic compounds assessment, and X-ray fluorescence were described due to their relevant potential. Nevertheless, some techniques revealed a low technology readiness level (TRL). The main conclusions identify HS, single and multi-spatial point observation, as the most applied methods for early plant disease diagnosis studies (88%), combined with distinct feature selection (FeS), dimensionality reduction (DR), and modeling techniques. Vegetation indices (28%) and principal component analysis (19%) were the most popular FeS and DR approaches, highlighting the most relevant wavelengths contributing to disease diagnosis. In modeling, classification was the most applied technique (80%), used mainly for binary and multi-class health status identification. Regression was used in the remaining (21%) scientific works screened. The data was collected primarily in laboratory conditions (62%), and a few works were performed in field conditions (21%). Regarding the study's etiological agent responsible for causing the disease, fungi (53%) and viruses (23%) were the most analyzed group of pathogens found in the literature. Overall, proximal sensors are suitable for early plant disease diagnosis before and after symptom appearance, presenting classification accuracies mostly superior to 71% and regression coefficients superior to 61%. Nevertheless, additional research regarding the study of specific host-pathogen interactions is necessary.

2025

Modeling Impacts of Climate Change and Adaptation Measures on Rice Growth in Hainan, China

Authors
Rongchang Yang; Yahui Guo; Jiangwen Nie; Wei Zhou; Ruichen Ma; Bo Yang; Jinhe Shi; Jing Geng; Wenxiang Wu; Ji Liu; W. M. W. W. Kandegama; Mario Cunha;

Publication
Sustainability

Abstract
Rising temperatures, extreme precipitation events such as excessive or insufficient rainfall, increasing levels of carbon dioxide, and associated climatic factors will persistently impact crop growth and agricultural production. The warming temperatures have reduced the agricultural crop yields. Rice (Oryza sativa L.) is the major food crop, which is particularly susceptible to the effects of climate change. It is very important to accurately evaluate the impacts of climate change on rice growth and rice yield. In this study, the rice growth during 1981–2018 (baseline period) and 2041–2100 (future period) were separately simulated and compared within the CERES-Rice model (v4.6) using high-quality weather data, soil, and field experimental data at six agro-meteorological stations in Hainan Province. For the climate data of the future period, the SSP1-2.6, SSP3-7.0, and SSP5-8.5 scenarios were applied, with carbon dioxide (CO2) fertilization effects considered. The adaptation strategies such as adjusting planting dates and switching rice cultivars were also assessed. The simulation results indicated that the early rice yields in the 2050s, 2070s, and 2090s were projected to decrease by 6.2%, 11.8%, and 20.0% when the CO2 fertilization effect was not considered, compared with the results of the baseline period, respectively, while late rice yields would decline by 9.9%, 23.4%, and 36.3% correspondingly. When accounting for the CO2 fertilization effect, the yields of early rice and late rice in the 2090s increased 16.9% and 6.2%, respectively. Regarding adaptation measures, adjusting planting dates and switching rice cultivars could increase early rice yields by 22.7% and 43.3%, respectively, while increasing late rice yields by 20.2% and 34.2% correspondingly. This study holds substantial scientific importance for elucidating the mechanistic pathways through which climate change influences rice productivity in tropical agro-ecosystems, and provides a critical foundation for formulating evidence-based adaptation strategies to mitigate climate-related risks in a timely manner. Cultivar substitution and temporal shifts in planting dates constituted two adaptation strategies for attenuating the adverse impacts of anthropogenic climate change on rice.

Supervised
thesis

2023

OmicSense: Optical sensors for integration of multi-omics and physiological phenotyping within a holistic field-phenomics approach to improve precision viticulture

Author
Igor Godinho Portis

Institution
UP-FCUP

2023

OmicSense: Optical sensors for integration of multi-omics and physiological phenotyping within a holistic field-phenomics approach to improve precision viticulture

Author
Igor Godinho Portis

Institution
UP-FCUP

2023

Digital Twins for Precision Agriculture - Assimilation of Digital Phenotyping. Robotics and Artificial Intelligence

Author
Leandro de Almeida Rodrigues

Institution
UP-FCUP

2023

Early diagnosis of bacterial plant diseases based on proximal sensing from a precision agriculture perspective

Author
Mafalda Alexandra Reis Pereira

Institution
UP-FCUP

2023

Intensificação do Sistema de Culturas Forrageiras do Noroeste Atlântico de Portugal: Performance Agronómica e Económica da Sucessão Milho-Milho Encadeada com Cereais Imaturos de Outono Inverno

Author
Manuel Celestino Gonçalves Azevedo

Institution
UP-FCUP