Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

Nuno Azevedo Silva graduated in Physics in 2011 at the Faculty of Sciences of University of Porto and concluded is Msc degree in Physics at University of Porto two years later(2013). Following a brief experience under a scientific research grant, he engaged in the MAP-fis doctoral programme and is currently pursuing his PhD in Physics developing his activities at the Centre for Applied Photonics at INESC TEC.  His research interests include both Nonlinear and Quantum Optics, with particular interest in the nonlinear quantum-enhanced optical properties of atomic systems. His past research also included the study of Bose-Einstein condensates and computational Physics, with focus on high performance heterogeneous computing and GPU-accelerated solutions.

Interest
Topics
Details

Details

  • Name

    Nuno Azevedo Silva
  • Role

    Assistant Researcher
  • Since

    03rd December 2012
  • Nationality

    Portugal
  • Centre

    Applied Photonics
  • Contacts

    +351220402301
    nuno.a.silva@inesctec.pt
011
Publications

2025

Improving LIBS-based mineral identification with Raman imaging and spectral knowledge distillation

Authors
Lopes, T; Cavaco, R; Capela, D; Dias, F; Teixeira, J; Monteiro, CS; Lima, A; Guimaraes, D; Jorge, PAS; Silva, NA;

Publication
TALANTA

Abstract
Combining data from different sensing modalities has been a promising research topic for building better and more reliable data-driven models. In particular, it is known that multimodal spectral imaging can improve the analytical capabilities of standalone spectroscopy techniques through fusion, hyphenation, or knowledge distillation techniques. In this manuscript, we focus on the latter, exploring how one can increase the performance of a Laser-induced Breakdown Spectroscopy system for mineral classification problems using additional spectral imaging techniques. Specifically, focusing on a scenario where Raman spectroscopy delivers accurate mineral classification performance, we show how to deploy a knowledge distillation pipeline where Raman spectroscopy may act as an autonomous supervisor for LIBS. For a case study concerning a challenging Li-bearing mineral identification of spodumene and petalite, our results demonstrate the advantages of this method in improving the performance of a single-technique system. LIBS trained with labels obtained by Raman presents an enhanced classification performance. Furthermore, leveraging the interpretability of the model deployed, the workflow opens opportunities for the deployment of assisted feature discovery pipelines, which may impact future academic and industrial applications.

2024

Autonomous and intelligent optical tweezers for improving the reliability and throughput of single particle analysis

Authors
Teixeira, J; Moreira, FC; Oliveira, J; Rocha, V; Jorge, PAS; Ferreira, T; Silva, NA;

Publication
MEASUREMENT SCIENCE AND TECHNOLOGY

Abstract
Optical tweezers are an interesting tool to enable single cell analysis, especially when coupled with optical sensing and advanced computational methods. Nevertheless, such approaches are still hindered by system operation variability, and reduced amount of data, resulting in performance degradation when addressing new data sets. In this manuscript, we describe the deployment of an automatic and intelligent optical tweezers setup, capable of trapping, manipulating, and analyzing the physical properties of individual microscopic particles in an automatic and autonomous manner, at a rate of 4 particle per min, without user intervention. Reproducibility of particle identification with the help of machine learning algorithms is tested both for manual and automatic operation. The forward scattered signal of the trapped PMMA and PS particles was acquired over two days and used to train and test models based on the random forest classifier. With manual operation the system could initially distinguish between PMMA and PS with 90% accuracy. However, when using test datasets acquired on a different day it suffered a loss of accuracy around 24%. On the other hand, the automatic system could classify four types of particles with 79% accuracy maintaining performance (around 1% variation) even when tested with different datasets. Overall, the automated system shows an increased reproducibility and stability of the acquired signals allowing for the confirmation of the proportionality relationship expected between the particle size and its friction coefficient. These results demonstrate that this approach may support the development of future systems with increased throughput and reliability, for biosciences applications.

2024

From sensor fusion to knowledge distillation in collaborative LIBS and hyperspectral imaging for mineral identification

Authors
Lopes, T; Capela, D; Guimaraes, D; Ferreira, MFS; Jorge, PAS; Silva, NA;

Publication
SCIENTIFIC REPORTS

Abstract
Multimodal spectral imaging offers a unique approach to the enhancement of the analytical capabilities of standalone spectroscopy techniques by combining information gathered from distinct sources. In this manuscript, we explore such opportunities by focusing on two well-known spectral imaging techniques, namely laser-induced breakdown spectroscopy, and hyperspectral imaging, and explore the opportunities of collaborative sensing for a case study involving mineral identification. In specific, the work builds upon two distinct approaches: a traditional sensor fusion, where we strive to increase the information gathered by including information from the two modalities; and a knowledge distillation approach, where the Laser Induced Breakdown spectroscopy is used as an autonomous supervisor for hyperspectral imaging. Our results show the potential of both approaches in enhancing the performance over a single modality sensing system, highlighting, in particular, the advantages of the knowledge distillation framework in maximizing the potential benefits of using multiple techniques to build more interpretable models and paving for industrial applications.

2024

Identification of Relevant Spectral Ranges in Laser-Induced Breakdown Spectroscopy Imaging Using the Fourier Space

Authors
Lopes, T; Capela, D; Ferreira, MFS; Guimaraes, D; Jorge, PAS; Silva, NA;

Publication
APPLIED SPECTROSCOPY

Abstract
Laser-induced breakdown spectroscopy (LIBS) imaging has now a well-established position in the subject of spectral imaging, leveraging multi-element detection capabilities and fast acquisition rates to support applications both at academic and technological levels. In current applications, the standard processing pipeline to explore LIBS imaging data sets revolves around identifying an element that is suspected to exist within the sample and generating maps based on its characteristic emission lines. Such an approach requires some previous expert knowledge both on the technique and on the sample side, which hinders a wider and more transparent accessibility of the LIBS imaging technique by non-specialists. To address this issue, techniques based on visual analysis or peak finding algorithms are applied on the average or maximum spectrum, and may be employed for automatically identifying relevant spectral regions. Yet, maps containing relevant information may often be discarded due to low signal-to-noise ratios or interference with other elements. In this context, this work presents an agnostic processing pipeline based on a spatial information ratio metric that is computed in the Fourier space for each wavelength and that allows for the identification of relevant spectral ranges in LIBS. The results suggest a more robust and streamlined approach to feature extraction in LIBS imaging compared with traditional inspection of the spectra, which can introduce novel opportunities not only for spectral data analysis but also in the field of data compression.

2024

Exploring the dynamics of the Kelvin-Helmholtz instability in paraxial fluids of light

Authors
Ferreira, TD; Garwola, J; Silva, NA;

Publication
PHYSICAL REVIEW A

Abstract
Paraxial fluids of light have recently emerged as promising analog physical simulators of quantum fluids using laser propagation inside nonlinear optical media. In particular, recent works have explored the versatility of such systems for the observation of two-dimensional quantum-like turbulence regimes, dominated by quantized vortex formation and interaction that results in distinctive kinetic energy power laws and inverse energy cascades. In this manuscript, we explore a regime analog to Kelvin-Helmholtz instability to examine in further detail the qualitative dynamics involved in the transition from smooth laminar flow to turbulence at the interface of two fluids with distinct velocities. Both numerical and experimental results reveal the formation of a vortex sheet as expected, with a quantized number of vortices determined by initial conditions. Using an effective length transformation scale we get a deeper insight into the vortex formation phase, observing the appearance of characteristic power laws in the incompressible kinetic energy spectrum that are related to the single vortex structures. The results enclosed demonstrate the versatility of paraxial fluids of light and may set the stage for the future observation of distinct classes of phenomena recently predicted to occur in these systems, such as radiant instability and superradiance.

Supervised
thesis

2023

New tools for high performance LIBS Imaging

Author
Tomás José Moreira Lopes

Institution
UP-FCUP

2023

Fiber Laser Plasma Spectroscopy for Real-Time

Author
Miguel Fernandes Soares Ferreira

Institution
UP-FCUP

2023

Fiber Laser Plasma Spectroscopy for Real-Time

Author
Miguel Fernandes Soares Ferreira

Institution
UP-FCUP

2023

Advances in Paraxial Fluids of Light with Photorefractive Media

Author
Tiago David da Silva Ferreira

Institution
UP-FCUP

2023

Optical Tweezers: From automatic manipulation to multimodal sensing

Author
Joana Magalhães Baptista Teixeira

Institution
UP-FCUP