Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

Rúben Queirós completed in 2020 The MSc degree in Electrical and Computer Engineering at the Faculty of Engineering of the University of Porto, Portugal. He is currently a PhD candidate in the Doctoral Program of Electrical and Computer Engineering, in the same institution. He has been an Assistant Researcher at INESC TEC since 2020, in the area of Wireless Networks (WiN). He has participated in the SMART open call project and the EU research project InterConnect. His research interests include Wi-Fi, Rate Adaptation, Reinforcement Learning and Flying Networks.

Interest
Topics
Details

Details

  • Name

    Rúben Miguel Queirós
  • Role

    Research Assistant
  • Since

    21st February 2020
001
Publications

2025

Context-aware Rate Adaptation for Predictive Flying Networks using Contextual Bandits

Authors
Queirós, R; Kaneko, M; Fontes, H; Campos, R;

Publication
CoRR

Abstract

2025

Context-Aware Rate Adaptation for Predictable Flying Networks using Contextual Bandits

Authors
Queiros, R; Kaneko, M; Fontes, H; Campos, R;

Publication
IEEE Networking Letters

Abstract
The increasing complexity of wireless technologies, such as Wi-Fi, presents significant challenges for Rate Adaptation (RA) due to the large configuration space of transmission parameters. While extensive research has been conducted on RA for low-mobility networks, existing solutions fail to adapt in Flying Networks (FNs), where high mobility and dynamic wireless conditions introduce additional uncertainty. We propose Linear Upper Confidence Bound for RA (LinRA), a novel Contextual Bandit-based approach that leverages real-Time link context to optimize transmission rates in predictable FNs, where future trajectories are known. Simulation results demonstrate that LinRA converges 5.2× faster than benchmarks and improves throughput by 80% in Non Line-of-Sight conditions, matching the performance of ideal algorithms. © 2025 Elsevier B.V., All rights reserved.

2024

Trajectory-Aware Rate Adaptation for Flying Networks

Authors
Queiros, R; Ruela, J; Fontes, H; Campos, R;

Publication
Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST

Abstract
Despite the trend towards ubiquitous wireless connectivity, there are scenarios where the communications infrastructure is damaged and wireless coverage is insufficient or does not exist, such as in natural disasters and temporary crowded events. Flying networks, composed of Unmanned Aerial Vehicles (UAV), have emerged as a flexible and cost-effective solution to provide on-demand wireless connectivity in these scenarios. UAVs have the capability to operate virtually everywhere, and the growing payload capacity makes them suitable platforms to carry wireless communications hardware. The state of the art in the field of flying networks is mainly focused on the optimal positioning of the flying nodes, while the wireless link parameters are configured with default values. On the other hand, current link adaptation algorithms are mainly targeting fixed or low mobility scenarios. We propose a novel rate adaptation approach for flying networks, named Trajectory Aware Rate Adaptation (TARA), which leverages the knowledge of flying nodes’ movement to predict future channel conditions and perform rate adaptation accordingly. Simulation results of 100 different trajectories show that our solution increases throughput by up to 53% and achieves an average improvement of 14%, when compared with conventional rate adaptation algorithms such as Minstrel-HT. © ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2024.

2024

Joint Channel Bandwidth Assignment and Relay Positioning for Predictive Flying Networks

Authors
Queirós, R; Kaneko, M; Fontes, H; Campos, R;

Publication
IEEE Globecom Workshops 2024, Cape Town, South Africa, December 8-12, 2024

Abstract

2023

On the Analysis of Computational Delays in Reinforcement Learning-Based Rate Adaptation Algorithms

Authors
Trancoso, R; Pinto, J; Queirós, R; Fontes, H; Campos, R;

Publication
Simulation Tools and Techniques - 15th EAI International Conference, SIMUtools 2023, Seville, Spain, December 14-15, 2023, Proceedings

Abstract
Several research works have applied Reinforcement Learning (RL) algorithms to solve the Rate Adaptation (RA) problem in Wi-Fi networks. The dynamic nature of the radio link requires the algorithms to be responsive to changes in link quality. Delays in the execution of the algorithm due to implementional details may be detrimental to its performance, which in turn may decrease network performance. These delays can be avoided to a certain extent. However, this aspect has been overlooked in the state of the art when using simulated environments, since the computational delays are not considered. In this paper, we present an analysis of computational delays and their impact on the performance of RL-based RA algorithms, and propose a methodology to incorporate the experimental computational delays of the algorithms from running in a specific target hardware, in a simulation environment. Our simulation results considering the real computational delays showed that these delays do, in fact, degrade the algorithm’s execution and training capabilities which, in the end, has a negative impact on network performance. © ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2024.

Supervised
thesis

2022

Rate Adaptation Algorithm using Reinforcement Learning for Delay Minimisation in a Wi-Fi Link

Author
José Manuel de Sousa Magalhães

Institution
INESCTEC

2022

Utilização de Reinforcement Learning para otimização de ligações Wi-Fi no contexto de redes voadoras

Author
Gabriella Fernandes Pantaleão

Institution
INESCTEC

2022

On the Performance Impact of Computational Delays of RL-Based Networking Algorithms through Improved ns-3 Digital Twins

Author
João Paulo Ferreira Pinto

Institution
INESCTEC

2022

Analysis and Optimisation of Computational Delays in Reinforcement Learning-based Wi-Fi Rate Adaptation

Author
Ricardo Jorge Espirito Santo Trancoso

Institution
INESCTEC

2022

Using Deep Reinforcement Learning Techniques to Optimize the Throughput of Wi-Fi Links

Author
Héber Miguel Severino Ribeiro

Institution
INESCTEC