Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

Rúben Queirós completed in 2020 The MSc degree in Electrical and Computer Engineering at the Faculty of Engineering of the University of Porto, Portugal. He is currently a PhD candidate in the Doctoral Program of Electrical and Computer Engineering, in the same institution. He has been an Assistant Researcher at INESC TEC since 2020, in the area of Wireless Networks (WiN). He has participated in the SMART open call project and the EU research project InterConnect. His research interests include Wi-Fi, Rate Adaptation, Reinforcement Learning and Flying Networks.

Interest
Topics
Details

Details

  • Name

    Rúben Miguel Queirós
  • Role

    Research Assistant
  • Since

    21st February 2020
001
Publications

2024

Trajectory-Aware Rate Adaptation for Flying Networks

Authors
Queiros, R; Ruela, J; Fontes, H; Campos, R;

Publication
Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST

Abstract
Despite the trend towards ubiquitous wireless connectivity, there are scenarios where the communications infrastructure is damaged and wireless coverage is insufficient or does not exist, such as in natural disasters and temporary crowded events. Flying networks, composed of Unmanned Aerial Vehicles (UAV), have emerged as a flexible and cost-effective solution to provide on-demand wireless connectivity in these scenarios. UAVs have the capability to operate virtually everywhere, and the growing payload capacity makes them suitable platforms to carry wireless communications hardware. The state of the art in the field of flying networks is mainly focused on the optimal positioning of the flying nodes, while the wireless link parameters are configured with default values. On the other hand, current link adaptation algorithms are mainly targeting fixed or low mobility scenarios. We propose a novel rate adaptation approach for flying networks, named Trajectory Aware Rate Adaptation (TARA), which leverages the knowledge of flying nodes’ movement to predict future channel conditions and perform rate adaptation accordingly. Simulation results of 100 different trajectories show that our solution increases throughput by up to 53% and achieves an average improvement of 14%, when compared with conventional rate adaptation algorithms such as Minstrel-HT. © ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2024.

2023

On the Analysis of Computational Delays in Reinforcement Learning-Based Rate Adaptation Algorithms

Authors
Trancoso, R; Pinto, J; Queirós, R; Fontes, H; Campos, R;

Publication
Simulation Tools and Techniques - 15th EAI International Conference, SIMUtools 2023, Seville, Spain, December 14-15, 2023, Proceedings

Abstract
Several research works have applied Reinforcement Learning (RL) algorithms to solve the Rate Adaptation (RA) problem in Wi-Fi networks. The dynamic nature of the radio link requires the algorithms to be responsive to changes in link quality. Delays in the execution of the algorithm due to implementional details may be detrimental to its performance, which in turn may decrease network performance. These delays can be avoided to a certain extent. However, this aspect has been overlooked in the state of the art when using simulated environments, since the computational delays are not considered. In this paper, we present an analysis of computational delays and their impact on the performance of RL-based RA algorithms, and propose a methodology to incorporate the experimental computational delays of the algorithms from running in a specific target hardware, in a simulation environment. Our simulation results considering the real computational delays showed that these delays do, in fact, degrade the algorithm’s execution and training capabilities which, in the end, has a negative impact on network performance. © ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2024.

2023

Rate Adaptation Aware Positioning for Flying Gateways Using Reinforcement Learning

Authors
Pantaleão, G; Queirós, R; Fontes, H; Campos, R;

Publication
Simulation Tools and Techniques - 15th EAI International Conference, SIMUtools 2023, Seville, Spain, December 14-15, 2023, Proceedings

Abstract
With the growing connectivity demands, Unmanned Aerial Vehicles (UAVs) have emerged as a prominent component in the deployment of Next Generation On-demand Wireless Networks. However, current UAV positioning solutions typically neglect the impact of Rate Adaptation (RA) algorithms or simplify its effect by considering ideal and non-implementable RA algorithms. This work proposes the Rate Adaptation aware RL-based Flying Gateway Positioning (RARL) algorithm, a positioning method for Flying Gateways that applies Deep Q-Learning, accounting for the dynamic data rate imposed by the underlying RA algorithm. The RARL algorithm aims to maximize the throughput of the flying wireless links serving one or more Flying Access Points, which in turn serve ground terminals. The performance evaluation of the RARL algorithm demonstrates that it is capable of taking into account the effect of the underlying RA algorithm and achieve the maximum throughput in all analysed static and mobile scenarios. © ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2024.

2023

Trajectory-Aware Rate Adaptation for Flying Networks

Authors
Queirós, R; Ruela, J; Fontes, H; Campos, R;

Publication
Simulation Tools and Techniques - 15th EAI International Conference, SIMUtools 2023, Seville, Spain, December 14-15, 2023, Proceedings

Abstract

2023

RateRL: A Framework for Developing RL-Based Rate Adaptation Algorithms in ns-3

Authors
Queirós, R; Ferreira, L; Fontes, H; Campos, R;

Publication
Simulation Tools and Techniques - 15th EAI International Conference, SIMUtools 2023, Seville, Spain, December 14-15, 2023, Proceedings

Abstract
The increasing complexity of recent Wi-Fi amendments is making the use of traditional algorithms and heuristics unfeasible to address the Rate Adaptation (RA) problem. This is due to the large combination of configuration parameters along with the high variability of the wireless channel. Recently, several works have proposed the usage of Reinforcement Learning (RL) techniques to address the problem. However, the proposed solutions lack sufficient technical explanation. Also, the lack of standard frameworks enabling the reproducibility of results and the limited availability of source code, makes the fair comparison with state of the art approaches a challenge. This paper proposes a framework, named RateRL, that integrates state of the art libraries with the well-known Network Simulator 3 (ns-3) to enable the implementation and evaluation of RL-based RA algorithms. To the best of our knowledge, RateRL is the first tool available to assist researchers during the implementation, validation and evaluation phases of RL-based RA algorithms and enable the fair comparison between competing algorithms.

Supervised
thesis

2022

On the Performance Impact of Computational Delays of RL-Based Networking Algorithms through Improved ns-3 Digital Twins

Author
João Paulo Ferreira Pinto

Institution
INESCTEC

2022

Analysis and Optimisation of Computational Delays in Reinforcement Learning-based Wi-Fi Rate Adaptation

Author
Ricardo Jorge Espirito Santo Trancoso

Institution
INESCTEC

2022

Using Deep Reinforcement Learning Techniques to Optimize the Throughput of Wi-Fi Links

Author
Héber Miguel Severino Ribeiro

Institution
INESCTEC

2022

Rate Adaptation Algorithm using Reinforcement Learning for Delay Minimisation in a Wi-Fi Link

Author
José Manuel de Sousa Magalhães

Institution
INESCTEC

2022

Utilização de Reinforcement Learning para otimização de ligações Wi-Fi no contexto de redes voadoras

Author
Gabriella Fernandes Pantaleão

Institution
INESCTEC