2022
Authors
Ferreira, TD; Rocha, V; Silva, D; Guerreiro, A; Silva, NA;
Publication
NEW JOURNAL OF PHYSICS
Abstract
The propagation of light in nonlinear optical media has been widely used as a tabletop platform for emulating quantum-like phenomena due to their similar theoretical description to quantum fluids. These fluids of light are often used to study two-dimensional phenomena involving superfluid-like flows, yet turbulent regimes still remain underexplored. In this work, we study the possibility of creating two-dimensional turbulent phenomena and probing their signatures in the kinetic energy spectrum. To that end, we emulate and disturb a fluid of light with an all-optical defect using the propagation of two beams in a photorefractive crystal. Our experimental results show that the superfluid regime of the fluid of light breaks down at a critical velocity at which the defect starts to exert a drag force on the fluid, in accordance with the theoretical and numerical predictions. Furthermore, in this dissipative regime, nonlinear perturbations are excited on the fluid that can decay into vortex structures and thus precede a turbulent state. Using the off-axis digital holography method, we reconstructed the complex description of the output fluids and calculated the incompressible component of the kinetic energy. With these states, we observed the expected power law that characterizes the generated turbulent vortex dipole structures. The findings enclosed in this manuscript align with the theoretical predictions for the vortex structures of two-dimensional quantum fluids and thus may pave the way to the observation of other distinct hallmarks of turbulent phenomena, such as distinct turbulent regimes and their associated power laws and energy cascades.
2022
Authors
Dias, B; Carvalho, J; Mendes, JP; Almeida, JMMM; Coelho, LCC;
Publication
POLYMERS
Abstract
Relative humidity (RH) monitorization is of extreme importance on scientific and industrial applications, and optical fiber sensors (OFS) may provide adequate solutions. Typically, these kinds of sensors depend on the usage of humidity responsive polymers, thus creating the need for the characterization of the optical and expansion properties of these materials. Four different polymers, namely poly(vinyl alcohol), poly(ethylene glycol), Hydromed (TM) D4 and microbiology agar were characterized and tested using two types of optical sensors. First, optical fiber Fabry-Perot (FP) tips were made, which allow the dynamical measurement of the polymers' response to RH variations, in particular of refractive index, film thickness, and critical deliquescence RH. Using both FP tips and Long-Period fiber gratings, the polymers were then tested as RH sensors, allowing a comparison between the different polymers and the different OFS. For the case of the FP sensors, the PEG tips displayed excellent sensitivity above 80%RH, outperforming the other polymers. In the case of LPFGs, the 10% (wt/wt) PVA one displayed excellent sensitivity in a larger working range (60 to 100%RH), showing a valid alternative to lower RH environment sensing.
2022
Authors
Dos Santos, PSS; de Almeida, JMMM; Coelho, LCC;
Publication
U.Porto Journal of Engineering
Abstract
Nanoparticles create localized surface plasmonic resonances (LSPR) with lower surrounding refractive index (SRI) sensitivities than their propagating SPR counterpart, originated in thin films. Historically, LSPR SRI sensitivities enhancements were achieved through spectral analysis methods that focus on unique spectral features. Herein, a study using that methodology was applied on SPR devices resulting in an increased sensitivity to SRI. It was found that by applying the inflection point method on optical fiber SPR sensors resulted in both sensitivity and resolution increments up to 44 and 35 %, respectively, in the SRI range from 1.3333 to 1.4150. Thus, successfully improving sensing capabilities of SPR based optical fiber sensors. © 2022, Universidade do Porto - Faculdade de Engenharia. All rights reserved.
2022
Authors
Dias, B; de Almeida, JMMM; Coelho, LCC;
Publication
U.Porto Journal of Engineering
Abstract
Relative humidity is an important parameter in controlled environments and is typically monitored using low-cost electrochemical sensors with low resolution and accuracy. This kind of sensors cannot not be implemented in harsh or explosive environments (as in pyrotechnic facilities) due to electrical discharges, or in marine structures where the oxidation of the sensing probe materials changes the sensing response). In these cases, fiber optic sensors can provide solutions due to their intrinsic properties, such as immunity to electromagnetic interference and resistance in harsh environments. This work presents preliminary results regarding the steps of the fabrication of Long-Period Fiber Gratings, the coating processes with a thin layer of poly(ethylene glycol) (PEG) and its sensing performance to relative humidity, displaying a from 60 to 100%sensitivity of 0.6 nm/%RH in the range of 80 to 100%RH. © 2022, Universidade do Porto - Faculdade de Engenharia. All rights reserved.
2022
Authors
Dias, B; Mendes, JPS; de Almeida, JMMM; Coelho, LCC;
Publication
IEEE SENSORS JOURNAL
Abstract
Fiber optic-based refractometers is a thoroughly researched field, with many different configurations being used. However, most designs require external calibration using substances of known refractive index (RI) and their fabrication process might be impractical and time consuming, creating the need for a quick and accurate method of measuring RI of different substances. A simple method for simultaneous measurement in real-time of RI and thickness of polymer thin films is presented, allowing dynamic measurements in the presence of changing environmental parameters, such as temperature or humidity. This method, which does not require previous calibration, is based on an inline Fabry-Perot (FP) cavity, created by dipping the tip of a cleaved optical fiber (OF) in a polymer solution. The procedure consists of using the equations of the low finesse FP interferometers to directly extract information from the structure created, such as RI and cavity length, by working in the spectral window from 1500 to 1600nm. The method was validated by creating FP cavities with liquids of known RI, for which a typical precision of 3 x 10(-3) was achieved, along with errors lower than 0.6% and 1% for RI and cavity length determination, respectively, The procedure was then used to monitor three different curing processes, namely the temperature curing of Sylgard (TM) 184, the UV curing of Norland Optical Adhesives (TM) 65 and the mixing and curing of Ceys (TM) Araldite epoxy glue. Both RI and cavity length were compared to reference values, showing excellent agreement with the experimental results for a method that does not require external calibration.
2022
Authors
Dias, B; de Almeida, JMM; Coelho, LCC;
Publication
EPJ Web of Conferences
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.