Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Patrícia Ramos

2023

Forecasting Seasonal Sales with Many Drivers: Shrinkage or Dimensionality Reduction?

Authors
Ramos, P; Oliveira, JM; Kourentzes, N; Fildes, R;

Publication
APPLIED SYSTEM INNOVATION

Abstract
Retailers depend on accurate forecasts of product sales at the Store x SKU level to efficiently manage their inventory. Consequently, there has been increasing interest in identifying more advanced statistical techniques that lead to accuracy improvements. However, the inclusion of multiple drivers affecting demand into commonly used ARIMA and ETS models is not straightforward, particularly when many explanatory variables are available. Moreover, regularization regression models that shrink the model's parameters allow for the inclusion of a lot of relevant information but do not intrinsically handle the dynamics of the demand. These problems have not been addressed by previous studies. Nevertheless, multiple simultaneous effects interacting are common in retailing. To be successful, any approach needs to be automatic, robust and efficiently scaleable. In this study, we design novel approaches to forecast retailer product sales taking into account the main drivers which affect SKU demand at store level. To address the variable selection challenge, the use of dimensionality reduction via principal components analysis (PCA) and shrinkage estimators was investigated. The empirical results, using a case study of supermarket sales in Portugal, show that both PCA and shrinkage are useful and result in gains in forecast accuracy in the order of 10% over benchmarks while offering insights on the impact of promotions. Focusing on the promotional periods, PCA-based models perform strongly, while shrinkage estimators over-shrink. For the non-promotional periods, shrinkage estimators significantly outperform the alternatives.

2023

Investigating the Accuracy of Autoregressive Recurrent Networks Using Hierarchical Aggregation Structure-Based Data Partitioning

Authors
Oliveira, JM; Ramos, P;

Publication
BIG DATA AND COGNITIVE COMPUTING

Abstract
Global models have been developed to tackle the challenge of forecasting sets of series that are related or share similarities, but they have not been developed for heterogeneous datasets. Various methods of partitioning by relatedness have been introduced to enhance the similarities of sets, resulting in improved forecasting accuracy but often at the cost of a reduced sample size, which could be harmful. To shed light on how the relatedness between series impacts the effectiveness of global models in real-world demand-forecasting problems, we perform an extensive empirical study using the M5 competition dataset. We examine cross-learning scenarios driven by the product hierarchy commonly employed in retail planning to allow global models to capture interdependencies across products and regions more effectively. Our findings show that global models outperform state-of-the-art local benchmarks by a considerable margin, indicating that they are not inherently more limited than local models and can handle unrelated time-series data effectively. The accuracy of data-partitioning approaches increases as the sizes of the data pools and the models' complexity decrease. However, there is a trade-off between data availability and data relatedness. Smaller data pools lead to increased similarity among time series, making it easier to capture cross-product and cross-region dependencies, but this comes at the cost of a reduced sample, which may not be beneficial. Finally, it is worth noting that the successful implementation of global models for heterogeneous datasets can significantly impact forecasting practice.

2023

Cross-Learning-Based Sales Forecasting Using Deep Learning via Partial Pooling from Multi-level Data

Authors
Oliveira, JM; Ramos, P;

Publication
24TH INTERNATIONAL CONFERENCE ON ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EAAAI/EANN 2023

Abstract
Sales forecasts are an important tool for inventory management, allowing retailers to balance inventory levels with customer demand and market conditions. By using sales forecasts to inform inventory management decisions, companies can optimize their inventory levels and avoid costly stockouts or excess inventory costs. The scale of the forecasting problem in the retail domain is significant and requires ongoing attention and resources to ensure accurate and effective forecasting. Recent advances in machine learning algorithms such as deep learning have made possible to build more sophisticated forecasting models that can learn from large amounts of data. These global models can capture complex patterns and relationships in the data and predict demand across multiple regions and product categories. In this paper, we investigate the cross-learning scenarios, inspired by the product hierarchy frequently utilized in retail planning, which enable global models to better capture interdependencies between different products and regions. Our empirical results obtained using M5 competition dataset indicate that the cross-learning approaches exhibit significantly superior performance compared to local forecasting benchmarks. Our findings also suggest that using partial pooling at the lowest aggregation level of the retail hierarchical allows for a more effective capture of the distinct characteristics of each group.

2009

Environmental Impact Assessment and Management of Sewage Outfall Discharges Using AUV'S

Authors
Ramos, P; V., M;

Publication
Underwater Vehicles

Abstract

2009

Monitorização de descargas de águas residuais no mar através de veículos submarinos autónomos (VSAs)

Authors
Ramos, P; Valente Neves, M;

Publication
Ingeniería del agua

Abstract

2010

Avaliação de Impacto Ambiental de Descargas de Águas Residuais Usando Uma Metodologia Geoestatística

Authors
MONEGO, M; RAMOS, P; NEVES, M;

Publication
Revista Brasileira de Recursos Hídricos

Abstract

  • 3
  • 7