2024
Authors
Magalhães, SC; Moreira, AP; dos Santos, FN; Dias, J;
Publication
Proceedings of the 21st International Conference on Informatics in Control, Automation and Robotics, ICINCO 2024, Porto, Portugal, November 18-20, 2024, Volume 2.
Abstract
RGB-D sensors face multiple challenges operating under open-field environments because of their sensitivity to external perturbations such as radiation or rain. Multiple works are approaching the challenge of perceiving the three-dimensional (3D) position of objects using monocular cameras. However, most of these works focus mainly on deep learning-based solutions, which are complex, data-driven, and difficult to predict. So, we aim to approach the problem of predicting the three-dimensional (3D) objects’ position using a Gaussian viewpoint estimator named best viewpoint estimator (BVE), powered by an extended Kalman filter (EKF). The algorithm proved efficient on the tasks and reached a maximum average Euclidean error of about 32mm. The experiments were deployed and evaluated in MATLAB using artificial Gaussian noise. Future work aims to implement the system in a robotic system. © 2024 by SCITEPRESS-Science and Technology Publications, Lda.
2015
Authors
Lau, N; Moreira, AP; Ventura, R; Faria, BM;
Publication
Journal of Intelligent and Robotic Systems: Theory and Applications
Abstract
2024
Authors
Pires, F; Moreira, AP; Leitao, P;
Publication
29th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA 2024, Padova, Italy, September 10-13, 2024
Abstract
The emergence of Digital Twins (DT) in Industry 4.0 has enabled the decision support systems taking advantage of more effective recommendation systems (RS). Despite the RS's growing popularity and ability to support decision-makers, these face two significant challenges, cold-start and data sparsity, which limits the system's capability to provide effective and accurate decision support. This paper aims to address these issues by conducting a literature review, analysing the current research landscape, and identifying the main enabling methods, algorithms, and similarity measures to mitigate these challenges. The performed analysis enables the point out of future research directions for developing effective and accurate RS that empower decision-makers. © 2024 IEEE.
2024
Authors
Carvalho, JP; Moreira, AP; Aguiar, AP;
Publication
2024 7TH IBERIAN ROBOTICS CONFERENCE, ROBOT 2024
Abstract
In the field of intelligent autonomous robots, integrating optimization techniques with classical control theory methods for mobile robot control is an increasingly prominent area of research. The combination enhances robots' ability to perform their tasks more efficiently, reliably, and safely. This paper addresses the development of a path and motion planning framework for omnidirectional robots, leveraging B-Splines and Trajectory Tracking with Model Predictive Control. The proposed framework is evaluated through software-in-the-loop tests using two distinct dynamical models and sets of hyperparameters. Final validation is conducted by implementing the framework within a ROS environment and performing field tests on a robotic platform. The results demonstrate that the robot can reliably track trajectories at its actuation limits, and the proposed framework enables the robot to increase its velocity up to 50% when compared to a PID path-following controller.
2023
Authors
Magalhães, SC; dos Santos, FN; Moreira, AP; Dias, J;
Publication
CoRR
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.