Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CTM

2023

Automatic Test-Based Assessment of Assembly Programs

Authors
Tavares, L; Lima, B; Araújo, A;

Publication
Proceedings of the 18th International Conference on Software Technologies

Abstract

2023

A Review of Recent Advances and Challenges in Grocery Label Detection and Recognition

Authors
Guimaraes, V; Nascimento, J; Viana, P; Carvalho, P;

Publication
APPLIED SCIENCES-BASEL

Abstract
When compared with traditional local shops where the customer has a personalised service, in large retail departments, the client has to make his purchase decisions independently, mostly supported by the information available in the package. Additionally, people are becoming more aware of the importance of the food ingredients and demanding about the type of products they buy and the information provided in the package, despite it often being hard to interpret. Big shops such as supermarkets have also introduced important challenges for the retailer due to the large number of different products in the store, heterogeneous affluence and the daily needs of item repositioning. In this scenario, the automatic detection and recognition of products on the shelves or off the shelves has gained increased interest as the application of these technologies may improve the shopping experience through self-assisted shopping apps and autonomous shopping, or even benefit stock management with real-time inventory, automatic shelf monitoring and product tracking. These solutions can also have an important impact on customers with visual impairments. Despite recent developments in computer vision, automatic grocery product recognition is still very challenging, with most works focusing on the detection or recognition of a small number of products, often under controlled conditions. This paper discusses the challenges related to this problem and presents a review of proposed methods for retail product label processing, with a special focus on assisted analysis for customer support, including for the visually impaired. Moreover, it details the public datasets used in this topic and identifies their limitations, and discusses future research directions of related fields.

2023

Improving Mobile-Based Cervical Cytology Screening: A Deep Learning Nucleus-Based Approach for Lesion Detection

Authors
Mosiichuk, V; Sampaio, A; Viana, P; Oliveira, T; Rosado, L;

Publication
APPLIED SCIENCES-BASEL

Abstract
Liquid-based cytology (LBC) plays a crucial role in the effective early detection of cervical cancer, contributing to substantially decreasing mortality rates. However, the visual examination of microscopic slides is a challenging, time-consuming, and ambiguous task. Shortages of specialized staff and equipment are increasing the interest in developing artificial intelligence (AI)-powered portable solutions to support screening programs. This paper presents a novel approach based on a RetinaNet model with a ResNet50 backbone to detect the nuclei of cervical lesions on mobile-acquired microscopic images of cytology samples, stratifying the lesions according to The Bethesda System (TBS) guidelines. This work was supported by a new dataset of images from LBC samples digitalized with a portable smartphone-based microscope, encompassing nucleus annotations of 31,698 normal squamous cells and 1395 lesions. Several experiments were conducted to optimize the model's detection performance, namely hyperparameter tuning, transfer learning, detected class adjustments, and per-class score threshold optimization. The proposed nucleus-based methodology improved the best baseline reported in the literature for detecting cervical lesions on microscopic images exclusively acquired with mobile devices coupled to the & mu;SmartScope prototype, with per-class average precision, recall, and F1 scores up to 17.6%, 22.9%, and 16.0%, respectively. Performance improvements were obtained by transferring knowledge from networks pre-trained on a smaller dataset closer to the target application domain, as well as including normal squamous nuclei as a class detected by the model. Per-class tuning of the score threshold also allowed us to obtain a model more suitable to support screening procedures, achieving F1 score improvements in most TBS classes. While further improvements are still required to use the proposed approach in a clinical context, this work reinforces the potential of using AI-powered mobile-based solutions to support cervical cancer screening. Such solutions can significantly impact screening programs worldwide, particularly in areas with limited access and restricted healthcare resources.

2023

Emotion4MIDI: A Lyrics-Based Emotion-Labeled Symbolic Music Dataset

Authors
Sulun, S; Oliveira, P; Viana, P;

Publication
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2023, PT II

Abstract
We present a new large-scale emotion-labeled symbolic music dataset consisting of 12 k MIDI songs. To create this dataset, we first trained emotion classification models on the GoEmotions dataset, achieving state-of-the-art results with a model half the size of the baseline. We then applied these models to lyrics from two large-scale MIDI datasets. Our dataset covers a wide range of fine-grained emotions, providing a valuable resource to explore the connection between music and emotions and, especially, to develop models that can generate music based on specific emotions. Our code for inference, trained models, and datasets are available online.

2023

Data2MV - A user behaviour dataset for multi-view scenarios

Authors
da Costa, TS; Andrade, MT; Viana, P; Silva, NC;

Publication
DATA IN BRIEF

Abstract
The Data2MV dataset contains gaze fixation data obtained through experimental procedures from a total of 45 participants using an Intel RealSense F200 camera module and seven different video playlists. Each of the playlists had an approximate duration of 20 minutes and was viewed at least 17 times, with raw tracking data being recorded with a 0.05 second interval. The Data2MV dataset encompasses a total of 1.0 0 0.845 gaze fixations, gathered across a total of 128 experiments. It is also composed of 68.393 image frames, extracted from each of the 6 videos selected for these experiments, and an equal quantity of saliency maps, generated from aggregate fixation data. Software tools to obtain saliency maps and generate complementary plots are also provided as an open source software package. The Data2MV dataset was publicly released to the research community on Mendeley Data and constitutes an important contribution to reduce the current scarcity of such data, particularly in immersive, multi-view streaming scenarios. (c) 2023 Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

2023

An Introduction to the Evaluation of Perception Algorithms and LiDAR Point Clouds Using a Copula-Based Outlier Detector

Authors
Reis, N; da Silva, JM; Correia, MV;

Publication
REMOTE SENSING

Abstract
The increased demand for and use of autonomous driving and advanced driver assistance systems has highlighted the issue of abnormalities occurring within the perception layers, some of which may result in accidents. Recent publications have noted the lack of standardized independent testing formats and insufficient methods with which to analyze, verify, and qualify LiDAR (Light Detection and Ranging)-acquired data and their subsequent labeling. While camera-based approaches benefit from a significant amount of long-term research, images captured through the visible spectrum can be unreliable in situations with impaired visibility, such as dim lighting, fog, and heavy rain. A redoubled focus upon LiDAR usage would combat these shortcomings; however, research involving the detection of anomalies and the validation of gathered data is few and far between when compared to its counterparts. This paper aims to contribute to expand the knowledge on how to evaluate LiDAR data by introducing a novel method with the ability to detect these patterns and complement other performance evaluators while using a statistical approach. Although it is preliminary, the proposed methodology shows promising results in the evaluation of an algorithm's confidence score, the impact that weather and road conditions may have on data, and fringe cases in which the data may be insufficient or otherwise unusable.

  • 19
  • 325