2024
Authors
Ribeiro, FSF; Garcia, PJV; Silva, M; Cardoso, JS;
Publication
IEEE ACCESS
Abstract
Point source detection algorithms play a pivotal role across diverse applications, influencing fields such as astronomy, biomedical imaging, environmental monitoring, and beyond. This article reviews the algorithms used for space imaging applications from ground and space telescopes. The main difficulties in detection arise from the incomplete knowledge of the impulse function of the imaging system, which depends on the aperture, atmospheric turbulence (for ground-based telescopes), and other factors, some of which are time-dependent. Incomplete knowledge of the impulse function decreases the effectiveness of the algorithms. In recent years, deep learning techniques have been employed to mitigate this problem and have the potential to outperform more traditional approaches. The success of deep learning techniques in object detection has been observed in many fields, and recent developments can further improve the accuracy. However, deep learning methods are still in the early stages of adoption and are used less frequently than traditional approaches. In this review, we discuss the main challenges of point source detection, as well as the latest developments, covering both traditional and current deep learning methods. In addition, we present a comparison between the two approaches to better demonstrate the advantages of each methodology.
2024
Authors
Freitas, N; Montenegro, H; Cardoso, MJ; Cardoso, JS;
Publication
IEEE International Symposium on Biomedical Imaging, ISBI 2024, Athens, Greece, May 27-30, 2024
Abstract
Breast cancer locoregional treatment causes alterations to the physical aspect of the breast, often negatively impacting the self-esteem of patients unaware of the possible aesthetic outcomes of those treatments. To improve patients' self-esteem and enable a more informed choice of treatment when multiple options are available, the possibility to predict how the patient might look like after surgery would be of invaluable help. However, no work has been proposed to predict the aesthetic outcomes of breast cancer treatment. As a first step, we compare traditional computer vision and deep learning approaches to reproduce asymmetries of post-operative patients on pre-operative breast images. The results suggest that the traditional approach is better at altering the contour of the breast. In contrast, the deep learning approach succeeds in realistically altering the position and direction of the nipple. © 2024 IEEE.
2024
Authors
Torto, IR; Gonçalves, T; Cardoso, JS; Teixeira, LF;
Publication
IEEE International Symposium on Biomedical Imaging, ISBI 2024, Athens, Greece, May 27-30, 2024
Abstract
In fields that rely on high-stakes decisions, such as medicine, interpretability plays a key role in promoting trust and facilitating the adoption of deep learning models by the clinical communities. In the medical image analysis domain, gradient-based class activation maps are the most widely used explanation methods and the field lacks a more in depth investigation into inherently interpretable models that focus on integrating knowledge that ensures the model is learning the correct rules. A new approach, B-cos networks, for increasing the interpretability of deep neural networks by inducing weight-input alignment during training showed promising results on natural image classification. In this work, we study the suitability of these B-cos networks to the medical domain by testing them on different use cases (skin lesions, diabetic retinopathy, cervical cytology, and chest X-rays) and conducting a thorough evaluation of several explanation quality assessment metrics. We find that, just like in natural image classification, B-cos explanations yield more localised maps, but it is not clear that they are better than other methods' explanations when considering more explanation properties. © 2024 IEEE.
2024
Authors
Caldeira, E; Cardoso, JS; Sequeira, AF; Neto, PC;
Publication
CoRR
Abstract
2024
Authors
Martins, I; Matos, J; Gonçalves, T; Celi, LA; Wong, AI; Cardoso, JS;
Publication
CoRR
Abstract
2024
Authors
Cristino, R; Cruz, RPM; Cardoso, JS;
Publication
CoRR
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.