2020
Authors
Viveiros, D; de Almeida, JMMM; Coelho, L; Vasconcelos, H; Maia, JM; Amorim, VA; Jorge, PAS; Marques, PVS;
Publication
SENSORS
Abstract
Long period fiber gratings (LPFGs) were fabricated in a standard single mode fiber (SMF-28e) through femtosecond (fs) laser direct writing. LPFGs with longer and shorter periods were fabricated, which allows coupling from the fundamental core mode to lower and higher order asymmetric cladding modes (LP(1,6)and LP1,12, respectively). For the grating periods of 182.7 and 192.5 mu m, it was verified that the LP(1,12)mode exhibits a TAP at approximately 1380 and 1448 nm in air and water, respectively. Characterization of the LPFGs subjected to high-temperature thermal treatment was accomplished. Fine-tuning of the resonance band's position and thermal stability up to 600 degrees C was shown. The temperature sensitivity was characterized for the gratings with different periods and for different temperature ranges. A maximum sensitivity of -180.73, and 179.29 pm/degrees C was obtained for the two resonances of the 182.7 mu m TAP LPFG, in the range between 250 and 600 degrees C.
2020
Authors
Vasconcelos, H; de Almeida, JMMM; Saraiva, C; Viveiros, D; Jorge, PAS; Coelho, L;
Publication
OPTICAL SENSING AND DETECTION VI
Abstract
Biogenic amines, such as putrescine are potential indicators of food storage condition and deterioration. The real time measurement of their concentration in food may become an important method of food control. It was found that putrescine diffuses through a thin layer made from a solution of Poly(ethylene-co-vinyl acetate) (PEVA) and maleic anhydride. Poly(ethylene-co-vinyl acetate) is a common non-chlorinated vinyl capable to adsorb specific analytes as putrescine which upon diffusion, reversibly binds to the maleic anhydride causing the polymer swelling resulting in spectral changes from the optical point of view. Long Period Fiber Gratings coated with 30 nm titanium dioxide, a high refractive index material used to increase the intrinsic sensitivity to the external refractive index, were overcoated with a thin layer of maleic anhydride doped Poly(ethylene-co-vinyl acetate). When exposed to solutions containing small concentrations of putrescine the resonant band corresponding to the LP1,6 cladding mode was found to move to shorter wavelengths. The observed blue shift corresponds to the increasing concentration of putrescine in the fiber sensor structure. Further work is being carried out to improve the sensitivity and the limit of detection of the sensing system as well as to increase range of operation, which is presently limited to 0.3 to 0.5 M.
2020
Authors
Mendes, JP; Coelho, L; Pereira, CM; Jorge, PAS;
Publication
U.Porto Journal of Engineering
Abstract
The study of sensing materials to the detection of carbon dioxide (CO2) was achieved using p-nitrophenol (pNPh) as a colorimetric indicator. The sensing material was polymerized (NPLn), functionalized with 3-triethoxysilyl propyl isocyanate (IPTES) which sensitivity was tested in the form of a membrane as is and encapsulated in hollow silica nanoparticles. The sensing membranes were tested in a closed gas system comprising very precise flow controllers to deliver different concentrations of CO2 (vs. N2). The combination of the sensing membranes with multimode optical fibers and a dual-wavelength diode (LED) allows the measurement of the CO2 through the analysis of the induced absorbance changes with a self-referenced ratiometric scheme. The analysis of the sensing materials have shown significant changes in their chemical and physical properties and the results attest these materials with a strong potential for assessing CO2 dynamics in environmental, medical, and industrial applications.
2021
Authors
Vasconcelos, H; Coelho, LCC; Matias, A; Saraiva, C; Jorge, PAS; de Almeida, JMMM;
Publication
BIOSENSORS-BASEL
Abstract
Biogenic amines (BAs) are well-known biomolecules, mostly for their toxic and carcinogenic effects. Commonly, they are used as an indicator of quality preservation in food and beverages since their presence in higher concentrations is associated with poor quality. With respect to BA's metabolic pathways, time plays a crucial factor in their formation. They are mainly formed by microbial decarboxylation of amino acids, which is closely related to food deterioration, therefore, making them unfit for human consumption. Pathogenic microorganisms grow in food without any noticeable change in odor, appearance, or taste, thus, they can reach toxic concentrations. The present review provides an overview of the most recent literature on BAs with special emphasis on food matrixes, including a description of the typical BA assay formats, along with its general structure, according to the biorecognition elements used (enzymes, nucleic acids, whole cells, and antibodies). The extensive and significant amount of research that has been done to the investigation of biorecognition elements, transducers, and their integration in biosensors, over the years has been reviewed.
2021
Authors
Silva, LH; Santos, P; Coelho, LCC; Jorge, P; Baptista, JM;
Publication
SENSORS
Abstract
Optical fiber gratings have long shown their sensing capabilities. One of the main challenges, however, is the interrogation method applied, since typical systems tend to use broadband light sources with optical spectrum analyzers, laser scanning units or CCD (Charged Coupled Device) spectrometers. The following paper presents the development of an interrogation system, which explores the temperature response of a multimode laser diode, in order to interrogate long period fiber gratings. By performing a spectral sweep along one of its rejection bands, a discrete attenuation spectrum is created. Through a curve fitting technique, the original spectrum is restored. The built unit, while presenting a substantially reduced cost compared with typical interrogation systems, is capable of interrogating along a 10 nm window with measurement errors reaching minimum values as low as 0.4 nm, regarding the grating central wavelength, and 0.4 dB for its attenuation. Given its low cost and reduced dimensions, the developed system shows potential for slow-changing field applications.
2021
Authors
Dos Santos, PSS; De Almeida, JMMM; Pastoriza Santos, I; Coelho, LCC;
Publication
SENSORS
Abstract
Surface plasmon resonance (SPR) and localized surface plasmon resonance (LSPR) are among the most common and powerful label-free refractive index-based biosensing techniques available nowadays. Focusing on LSPR sensors, their performance is highly dependent on the size, shape, and nature of the nanomaterial employed. Indeed, the tailoring of those parameters allows the development of LSPR sensors with a tunable wavelength range between the ultra-violet (UV) and near infra-red (NIR). Furthermore, dealing with LSPR along optical fiber technology, with their low attenuation coefficients at NIR, allow for the possibility to create ultra-sensitive and long-range sensing networks to be deployed in a variety of both biological and chemical sensors. This work provides a detailed review of the key science underpinning such systems as well as recent progress in the development of several LSPR-based biosensors in the NIR wavelengths, including an overview of the LSPR phenomena along recent developments in the field of nanomaterials and nanostructure development towards NIR sensing. The review ends with a consideration of key advances in terms of nanostructure characteristics for LSPR sensing and prospects for future research and advances in this field.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.